
OPTIMIZATION METHODS & SOFTWARE
2022, VOL. 37, NO. 6, 2300–2323
https://doi.org/10.1080/10556788.2022.2078824

Operator splitting for adaptive radiation therapy with
nonlinear health dynamics

Anqi Fu a, Lei Xingb and Stephen Boyda

aDepartment of Electrical Engineering, Stanford University, Stanford, CA, USA; bDepartment of Radiation
Oncology, Stanford School of Medicine, Stanford, CA, USA

ABSTRACT
We present an optimization-based approach to radiation treatment
planning over time. Our approach formulates treatment planning as
an optimal control problem with nonlinear patient health dynam-
ics derived from the standard linear-quadratic cell survival model. As
the formulation is nonconvex, wepropose amethod for obtaining an
approximate solution by solving a sequence of convex optimization
problems. This method is fast, efficient, and robust to model error,
adapting readily to changes in the patient’s health between treat-
ment sessions. Moreover, we show that it can be combined with the
operator splitting method ADMM to produce an algorithm that is
highly scalable and can handle large clinical cases. We introduce an
open-source Python implementation of our algorithm, AdaRad, and
demonstrate its performance on several examples.
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1. Introduction

In radiation therapy, beams of ionizing radiation are transmitted into a patient, damaging
both tumor cells and normal tissue. The goal of radiation treatment planning is to deliver
enough dose to the tumor so that diseased cells are killed, while avoiding excessive injury
to the normal tissue and organs-at-risk (OARs). This is achieved by optimizing the beam
intensity profile, or fluence map, subject to constraints on the dose to certain parts of the
patient’s anatomy. The fluence map optimization problem is well-studied [1,15,29,30], and
technology like intensity-modulated radiation therapy (IMRT) is now widespread in the
clinic [18,41,42,48].

Treatment in practice usually takes place over multiple sessions. A clinician will divide
up the total prescribed dose into smaller dose fractions, which are delivered over the course
of several weeks or months. This permits normal tissue time to recover and repair cell
damage, but also gives tumors an opportunity to proliferate, especially when the treatment
course is long. A study of 4338 prostate cancer patients showed that biochemical failure
increases by 6% for every 1 week increase in treatment time, with a dose equivalent of
proliferation of 0.24Gy/day [38]. Thus, an important question in treatment planning is
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how to choose the sequence of deliverable doses such that they balance these temporal
effects on a patient’s health.

1.1. Related work

Early clinical practitioners split the prescribed dose equally over a fixed number of ses-
sions. While convenient, this method does not account for errors or uncertainty in the
treatment process. For example, due to movements of the patient’s anatomy, the expected
dosemay differ from the actual dose to an anatomical structure. If the actual dose is observ-
able, a common way to compensate for this is to divide the residual dose (i.e. the difference
between the prescribed and cumulative actual dose) across the remaining sessions. This
then becomes the new per-session dose goal. In [9], the authors solve for the beam intensi-
ties by minimizing the sum-of-squared difference between this goal dose and the expected
dose. They compare the results when errors are perfectly known, so the expected dose is
equal to the actual dose, with the results when errors are assumed to be zero. A similar
approach is taken in [12], except the errors are modeled explicitly as a random shift in
the surrounding voxels. Instead of the dose to each voxel, [34] work with the equivalent
uniform dose (EUD), a value that captures the biological effect of a dose distribution over
a region. Their objective is to minimize the sum of the EUD over all treatment criteria
subject to bounds on the EUD of the tumor and normal tissues. To solve this problem,
they employ methods from approximate dynamic programming coupled with a discrete
probabilistic model of the dose error.

The papers we have discussed so far only focus on the dose to the patient. By contrast,
Kim et al. [23] introduces a Markov decision process model that includes both the dose
(action) and the patient’s health state. Each choice of dose induces a transition to a partic-
ular health state with some probability. Making this idea concrete, Mizuta et al. [28] define
the health of a tumor (resp. OAR) to be the radiation (resp. damage) effect of the delivered
dose, as calculated from the linear-quadratic (LQ) model of cell survival [13]. They ana-
lyze a simple example with one tumor and oneOAR and find that the optimal fractionation
scheme is either a single session delivery of the full dose or equal dose fractions, depending
on the relationship between the LQ parameters. The authors of [3] extend this analysis to
incorporate accelerated tumor repopulation and show that the dose per session increases
over the treatment course. Using simulated annealing, Yang and Xing [45] solve a simi-
lar treatment planning problem based on the LQR model, which captures all 4 Rs (repair
of sublethal damage, repopulation, redistribution, and reoxygenation) of cellular radiation
response [7].

In [8], the authors take a probabilistic approach to patient dynamics. They model the
patient’s breathing motion using a probability mass function (PMF) over a finite set of
states. They then solve a robust optimization problem that enforces dose bounds over a set
of PMFs, which represent uncertainty during treatment. This uncertainty set is updated
after the dose fraction is delivered, and the problem is re-solved for the next session. A
follow-up paper [27] numerically studies the effects of adjusting the target dose based on
the dose delivered to date. It shows that this type of adjustment can lead to a high degree
of heterogeneity in the per-fraction dose distribution, which is undesirable from amedical
standpoint. The paper recommends an alternative method of uncertainty set adaptation to
mitigate these effects.
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The above analyzes provide insight into the tradeoffs between different fractionation
schemes in a simple setting. However, most clinical cases are more complex, involv-
ing multiple tumors, OARs, and nonlinear constraints. For instance, dose-volume (i.e.
percentile) constraints are widely used to limit the radiation exposure of a percent-
age of an anatomical structure, such as the spine. These constraints are nonconvex, but
can be approximated by a convex restriction [14,19,47]. In [31], the authors consider a
dynamic setting with multiple OARs and dose-volume constraints. Starting from a given
set of beam intensities, they solve for the optimal number of sessions and OAR spar-
ing factors. They also derive sufficient conditions under which the optimal treatment
consists of equal dose fractions. In a follow-up paper [32], the authors integrate the spa-
tial and temporal aspects of the problem, treating both beam intensities and number of
sessions as variables. Restricting their attention to equal fractions, they propose a two-
stage solution algorithm: in the first stage, they solve for the optimal beams given each
potential fixed number of sessions, and in the second stage, they select the number of ses-
sions based on the optimal objectives from the first stage. They show that their method
achieves better tumor ablation than conventional IMRT or the spatiotemporally separated
method.

Perhaps the paper most similar to ours is [24]. In it, the authors propose a stochas-
tic control formulation of the adaptive treatment planning problem with multiple tumors
and OARs. They estimate the radiation response of the tumors with a log-linear cell kill
model and the response of the OARs with the standard LQ model. Their goal is to min-
imize the expected number of tumor cells at the end of treatment subject to bounds on
the radiobiological impact on the OARs. Uncertainty arises in the cell model parame-
ters, which may fluctuate randomly between sessions, representing unpredictable changes
in the patient’s health status. The authors fix the number of sessions and focus on opti-
mizing with respect to the beam intensities. They show that their problem is convex, so
can be solved using a combination of standard stochastic control methods and off-the-
shelf convex solvers, and provide several examples demonstrating the effectiveness of their
approach.

1.2. Contribution

In this paper, we integrate the stochastic control approach with a distributed optimiza-
tion algorithm to produce a method for efficient large-scale adaptive treatment planning.
As clinical cases are quite complex, with tens of thousands of beams and treatment that
takes place overmonths, suchmethods are necessary to construct plans in a timely fashion.
(See [21] for a review of previous work on high-performance computing in radiation ther-
apy, particularly treatment optimization). We formulate the adaptive treatment planning
problem as a finite-horizon nonconvex optimal control problem. To solve it, we introduce
an operator splitting algorithm, which is based on solving a sequence of convex approxi-
mations. Our algorithm is naturally parallelizable and can handle a large number of beams,
sessions, and anatomical targets or OARs. Moreover, it can be combined with model pre-
dictive control to produce treatment plans that are robust to errors and uncertainty about
the patient’s health status.We illustrate our algorithm’s performance on a synthetic case, as
well as a large prostate cancer case, and provide an implementation in the Python package
AdaRad: https://github.com/anqif/adarad.

https://github.com/anqif/adarad
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2. Problem formulation

In radiation treatment, beams of ionizing radiation are delivered to a patient from an
external source. The goal is to damage or kill diseased tissue, while minimizing harm to
surrounding healthy organs. A course of treatment is generally divided into T sessions. At
the start of session t, the clinician chooses the intensity levels of the n beams, denoted by
bt ∈ Rn+. Typically, T ≈ 20 to 40 and n is on the order of 103 to 104. We are interested in
determining the best sequence of beam intensities b = (b1, . . . , bT), otherwise known as a
treatment plan, subject to upper bounds Bt ∈ R̄n+ on bt for t = 1, . . . ,T.

2.1. Anatomy and doses

The beams irradiate an area containing K anatomical structures, labeled i ∈ {1, . . . ,K},
where usually K<10. A subset T ⊂ {1, . . . ,K} are targets/tumors and the rest are OARs.
The dose delivered to each structure is linear in the beam intensities. We write the dose
vector dt = Atbt with At ∈ RK×n

+ a known matrix that characterizes the physical effects
and define d = (d1, . . . , dT). Notice that since bt and At are nonnegative, dt ≥ 0.

In every session, we impose a penalty on dt via a dose penalty function φt : RK → R ∪
{∞}. A common choice is

φt(dt) = θTt dt + ξTt d
◦2
t ,

where θt ∈ RK and ξt ∈ RK+ are constants. Here d◦2
t = dt 
 dt denotes the vector dt with

each element squared. The total dose penalty over all sessions is

φ(d) =
T∑
t=1

φt(dt).

Additionally, we enforce upper bound constraints dt ≤ Dt , where Dt ∈ R̄K+ is the maxi-
mum dose in session t.

2.2. Health dynamics

To assess treatment progress, we examine the health status of each anatomical structure
and encode these statuses in a vector ht ∈ RK . For now, the details of this encoding do not
matter. Typically, ht,i represents an estimate of the total surviving cells in structure i. Hence
if i ∈ T , a smaller ht,i is desirable (since the tumor is shrinking), while if i /∈ T , a larger ht,i
is desirable.

From an initial h0, the health status evolves in response to the radiation dose and var-
ious other biophysical factors that depend on the patient’s anatomy, generating a health
trajectory h = (h1, . . . , hT). Here we represent its dynamics as

ht = ft(ht−1, dt), t = 1, . . . ,T, (1)

where ft : RK × RK → RK is a known mapping function. In this paper, we focus on the
linear-quadratic (LQ) model in which

ft,i(ht−1, dt) = ht−1,i − αt,idt,i − βt,id2t,i + γt,i, i = 1, . . . ,K, t = 1, . . . ,T (2)
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with constants αt ∈ RK ,βt ∈ RK+, and γt ∈ RK . This model is commonly used to approxi-
mate cellular response to radiation [6,13,37]. Specifically, in the LQ+ time framework [39],
ht,i is the log of the fraction of surviving cells in structure i after a dose dt,i, while αt,i/βt,i
and γt,i are constants related to the structure’s survival curve and repair/repopulation rate,
respectively. Notice that Equation (2) implies that the health status of each structure evolves
independently of the others.

2.3. Health penalty and constraints

In order to control the patient’s health, we introduce a health penalty function ψt : RK →
R ∪ {∞} that imposes a penalty on ht . Moreover, we assume that

ψt(ht) = ψt(ht,1, . . . , ht,K) is monotonically

{
increasing in ht,i i ∈ T
decreasing in ht,i i /∈ T

(3)

for t = 1, . . . ,T. This means that for a target, the health penalty increases as the health
status increases, while for an organ-at-risk, the health penalty decreases as the health status
increases. The assumption is reasonable if, for instance, ht is a measure of cell survival in
session t, so a lower (higher) status is desirable for a target (organ-at-risk). An example of
a penalty function that satisfies (3) is

ψt(ht) = wT(ht − hgoalt )+ + wT(ht − hgoalt )−,

where hgoalt ∈ RK is the desired health status and w ∈ RK+ and w̄ ∈ RK+ are parameters
with wi = 0 for i ∈ T and wi = 0 for i /∈ T . Here we define (x)+ = max(x, 0) and (x)− =
−min(x, 0) applied elementwise to x. The total health penalty is

ψ(h) =
T∑
t=1

ψt(ht).

In addition, we enforce boundsHt ∈ R̄K on the health status such that ht,i ≤ Ht,i for i ∈ T
and ht,i ≥ Ht,i for i /∈ T .

2.4. Optimal control problem

Given an initial health status h0, we wish to select a treatment plan that minimizes the total
penalty across all sessions. Thus, our problem is

minimize
T∑
t=1

φt(dt)+
T∑
t=1

ψt(ht)

subject to ht = ft(ht−1, dt), t = 1, . . . ,T,
ht,i ≤ Ht,i, i ∈ T , ht,i ≥ Ht,i, i /∈ T , t = 1, . . . ,T,
dt = Atbt , 0 ≤ dt ≤ Dt , 0 ≤ bt ≤ Bt , t = 1, . . . ,T

(4)

with variables (b1, . . . , bT), (d1, . . . , dT), and (h1, . . . , hT). This is a discrete-time optimal
control problem. If φt andψt are convex and ft is affine, e.g. ft is given by (2) with quadratic
dose effectβt = 0, it is also convex and can be solved directly using standard convex solvers
[5].
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3. Lossless relaxation

For the remainder of this paper, we restrict our attention to a convex objective function
and linear-quadratic health dynamics (2). In this case, condition (3) allows us to relax the
health dynamics constraint so problem (4) can be written equivalently as

minimize
T∑
t=1

φt(dt)+
T∑
t=1

ψt(ht)

subject to ht,i ≥ ft,i(ht−1, dt), i ∈ T , t = 1, . . . ,T,
ht,i ≤ ft,i(ht−1, dt), i /∈ T , t = 1, . . . ,T,
ht,i ≤ Ht,i, i ∈ T , ht,i ≥ Ht,i, i /∈ T , t = 1, . . . ,T,
dt = Atbt , 0 ≤ dt ≤ Dt , 0 ≤ bt ≤ Bt , t = 1, . . . ,T.

(5)

The equality constraint ht = ft(ht−1, dt) has been replaced with two inequality constraints:
a lower bound for targets and an upper bound for OARs. Notice that the first inequality is
the only nonconvex constraint in (5). Our relaxed problem has the same solution set as (4)
because these two inequalities are tight at the optimum.

Proposition 3.1: Let (b	, d	, h	) be a solution to problem (5). If conditions (2) and (3) hold,

h	t = ft(h	t−1, d
	
t ), t = 1, . . . ,T.

Proof: Suppose there exist some t ∈ {1, . . . ,T} and i ∈ T such that h	t,i > ft,i(h	t−1, d
	
t ).

Then, we can choose an ε > 0 such that h	t,i > h	t,i − ε > ft,i(h	t−1, d
	
t ). Since fs,i(hs−1, ds)

is nondecreasing in hs−1,i for all s ∈ {1, . . . ,T}, the point (b	, d	, ĥ) with

ĥs,j =
{
h	s,j − ε s = t, j = i
h	s,j otherwise

is feasible for problem (5) because

ĥt,i > ft,i(h	t−1, d
	
t ) ≥ ft,i(ĥt−1, d	t ), h	t+1,i ≥ ft+1,i(h	t , d

	
t ) ≥ ft+1,i(ĥt , d	t ),

and ĥt,i < h	t,i ≤ Ht,i. Moreover, by condition (3), ψt(ĥt) < ψt(h	t ) so (b	, d	, ĥ) achieves
a lower objective value than (b	, d	, h	), contradicting our original assumption. An analo-
gous argument holds for t ∈ {1, . . . ,T} and i /∈ T such that h	t,i < ft,i(h	t−1, d

	
t ) with ĥt,i =

h	t,i + ε. �

4. Sequential convex optimization

4.1. Algorithm description

Problem (5) is in general nonconvex because the target’s health dynamics constraint

ht,i ≥ ft,i(ht−1, dt), i ∈ T , t = 1, . . . ,T (6)

is nonconvex when any βt �= 0. However, we can derive an estimate of its optimum by
solving a sequence of convex approximations. Each approximation is formed by linearizing
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the health dynamics function (2) around a fixed dose point and replacing the right-hand
side of (6) with this linearization minus a slack variable. The slack allows for a degree of
error in the approximation and is penalized in the objective.

More precisely, let dst ∈ RK for t = 1, . . . ,T. Define the linearized dynamics function

f̂t,i(ht−1, dt ; dst) = ht−1,i − αt,idt,i − βt,idst,i(2dt,i − dst,i)+ γt,i, i = 1, . . . ,K. (7)

This is the tangent line to the LQ function (2) at dt = dst and, as such, provides a uniform
upper bound because βt ≥ 0.We replace the nonconvex constraint (6) in problem (5) with
the affine constraint

ht,i = f̂t,i(ht−1, dt ; dst)− δt,i, i ∈ T , t = 1, . . . ,T, (8)

where δt ∈ RK+ is a slack variable. (The inequality can been tightened into an equality due
to Proposition 3.1). Convex approximation s is then

minimize
T∑
t=1

φt(dt)+
T∑
t=1

ψt(ht)+ λ

T∑
t=1

1Tδt

subject to ht,i = f̂t,i(ht−1, dt ; dst)− δt,i, i ∈ T , δt ≥ 0 t = 1, . . . ,T,
ht,i ≤ ft,i(ht−1, dt), i /∈ T , t = 1, . . . ,T,
ht,i ≤ Ht,i, i ∈ T , ht,i ≥ Ht,i, i /∈ T , t = 1, . . . ,T,
dt = Atbt , 0 ≤ dt ≤ Dt , 0 ≤ bt ≤ Bt , t = 1, . . . ,T

(9)

with variables (b1, . . . , bT), (d1, . . . , dT), (h1, . . . , hT), and (δ1, . . . , δT) and slack penalty
parameterλ > 0. The parameterλ is typically determined empirically or by trial-and-error.
This problem is convex and can be solved using standard convex solvers. Given a solution
to (9), we set the next linearization point ds+1 = (ds+1

1 , . . . , ds+1
T ) equal to the optimal dose.

Algorithm 4.1 Sequential convex optimization.

input: initial point d0, parameter λ > 0.

for s = 0, 1, . . . do
1. Linearize. For t = 1, . . . ,T, form the linearization (7) around dst .
2. Solve. Set ds+1 equal to an optimal dose of problem (9).

until stopping criterion (10) is satisfied.

Algorithm4.1 is a special case of the convex-concave procedure (CCP) [25,33,46], which
is itself a form of majorization-minimization [20,36]. CCP is a heuristic for finding a local
optimumof a nonconvex optimization problem. It is guaranteed to converge; indeed, when
certain differentiability conditions are met, it converges to a stationary point [35]. As a
descent algorithm, CCP is usually terminated when the change in the objective falls below
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some user-specified threshold ε > 0, i.e.

psopt − ps+1
opt < ε, (10)

where psopt is the optimal objective of problem (9). In our simple experiments, we have
found that an initial linearization point of d0 = 0 and threshold of ε = 10−3 produce good
results.

4.2. Illustrative example

4.2.1. Problem instance
We consider an example with n = 1000 beams divided into 50 bundles of 20 parallel beams
each, positioned evenly around a half-circle. There are K = 5 structures, a single target
T = {1} and four OARs (including generic body voxels) depicted in Figure 1. Treatment
takes place over T = 20 sessions, so the basic problem has nT + 2KT = 20200 variables.

The patient’s initial health status is h0 = (1, 0, 0, 0, 0). His status evolves according to
Equation (2) with

αt = (0.01, 0.50, 0.25, 0.15, 0.005),

βt = (0.001, 0.05, 0.025, 0.015, 0.0005),

γt = (0.05, 0, 0, 0, 0)

over all sessions t = 1, . . . ,T.
We set the health penalty function to

ψt(ht) = (ht,1)+ +
5∑

i=2
(ht,i)−, t = 1, . . . ,T.

Figure 1. Anatomical structures for Example 4.2. Red is the target (i = 1), while green (i = 2), blue
(i = 3), and orange (i = 4) are specific OARs. White denotes the non-target body voxels (i = 5).
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This function penalizes positive statuses of the target and negative statuses of the OARs.
Moreover, we constrain the target’s health status to be ht,1 ≤ 2.0 for t = 1, . . . , 15 and
ht,1 ≤ 0.05 for the remaining sessions, and we enforce a bound on the other structures’
health statuses of (ht,2, ht,3, ht,4, ht,5) ≥ (−1.0,−2.0,−2.0,−3.0). Thus,

Ht =
{
(2.0,−1.0,−2.0,−2.0,−3.0) t = 1, . . . , 15
(0.05,−1.0,−2.0,−2.0,−3.0) t = 16, . . . ,T.

For the dose penalty function, we choose

φt(dt) =
4∑

i=1
d2t,i + 0.25d2t,5, t = 1, . . . ,T.

In addition, we restrict the dose and beam intensity to be no more than Dt = 20 and Bt =
1.0, respectively, over all sessions t.

4.2.2. Computational details
We implemented Algorithm 4.1 in Python using CVXPY [10] and solved problem (9) with
MOSEK [2]. From an initial d0 = 0 and λ = 104, the algorithm converged in 11 iterations
to a threshold of ε = 10−3. Total runtimewas approximately 17 seconds on a 64-bitUbuntu
OS desktop with 8 4-core Intel i7-4790k / 4.00 GHz CPUs and 16 GB of RAM.

4.2.3. Results and analysis
The optimal treatment plan is depicted in Figure 2. Beams are densely clustered diagonal
from the vertical, striking the target while largely sparing the OARs. As the sessions con-
tinue, the number of beams slowly increases, damaging some of the less sensitive organs
(i = 3 and 4). Then at t = 16, when the target’s health bound becomes more stringent,
the beam density drops precipitously so that only a narrow bundle remains focused on the
target, keeping its health status at the desired level.

Figure 2. Optimal beam intensities for Example 4.2.
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Figure 3. Optimal (a) radiation dose and (b) health status trajectories for Example 4.2. Dashed lines
represent the bounds on the dose and health status (Dt,i and Ht,i , respectively).

Figure 3 shows the radiation dose and health status resulting from this plan. The latter
was computed by plugging the optimal dose into Equation (2). Total dose to the target
(i = 1) and body voxels (i = 5) far exceed the dose to any other structures. By the end of
treatment, the target’s health status has fallen to a steady 0.05, while the health statuses of
the OARs remain within their respective lower limits.

5. Model predictive control

5.1. Algorithm description

So far, we have assumed that at the time of planning, ft perfectly captures the health
dynamics from t = 1, . . . ,T. This is rarely true in practice. A patient’s anatomy changes
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unpredictably between sessions, affecting the dispersion of radiation beams and the course
of their health status. We can incorporate these changes into problem (4) using model
predictive control (MPC).

MPC is a powerful technique for automatic control of complex, nonlinear, stochastic
systems. It performs extremely well even when the dynamics are approximated by a simple
model, since the system’s state is updated regularly and new information is incorporated
into the solution. This is particularly fitting for radiation treatment planning.

As is customary in MPC, we first convert the state variable constraints in the original
problem into soft constraints, i.e. we remove the inequality constraints on h in (4) and add
a penalty for violating them to the objective. Let cτ : RK → R be the corresponding health
violation penalty function, defined as

cτ (hτ ) =
∑
i∈T
(hτ ,i − Hτ ,i)+ +

∑
i/∈T
(Hτ ,i − hτ ,i)+, τ = 1, . . . ,T.

This penalty function allows us to accommodate new and unexpected changes in the
patient’s health, such as the metastasis of a tumor that renders it impossible to control
without exceeding the health damage limit of an OAR.

We are now ready to describe MPC for our model. At the beginning of each session t,
we observe At , ft , and the patient’s true health status, ht−1, then form the problem

minimize
T∑
τ=t

φτ (dτ )+
T∑
τ=t

ψτ (hτ )+ η

T∑
τ=t

cτ (hτ )

subject to hτ = ft(hτ−1, dτ ), τ = t, . . . ,T,
dτ = Atbτ , 0 ≤ dτ ≤ Dτ , 0 ≤ bτ ≤ Bτ , τ = t, . . . ,T

(11)

with variables (bt , . . . , bT), (dt , . . . , dT), and (ht , . . . , hT) and violation penalty parameter
η > 0. Since cτ is convex, problem (11) is convex and can be solved using a slight variation
on Algorithm 4.1. Let b̄ = (b̄t , . . . , b̄T) be the optimal treatment plan. We carry out only
the first treatment, b̄t , and update our observationsAt+1, ft+1, and ht based on the patient’s
response. This process repeats until all T sessions have been completed.

5.2. Illustrative example

5.2.1. Problem instance
We return to the setting of Example 4.2, except now, the health dynamics are modeled with
some error. Specifically, let ht−1 be the patient’s health status at the beginning of session
t and dt the dose delivered during session t. Our model predicts the status will become
ĥt = ft(ht−1, dt). In fact, at the beginning of the next session, we observe the true health
status to be

ht,i =
{
max(ĥt,i + ωt,i, 0) i ∈ T
min(ĥt,i + ωt,i, 0) i /∈ T

,

where ωt ∈ RK is drawn fromN(μ, σ 2I). This random process continues for t = 1, . . . ,T.
For this example, we choose μ = 0 and σ = 0.1. The rest of the functions and parame-

ter values are identical to 4.2. In particular, we still employ the LQmodel (2) with constant
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αt ,βt , and γt even though the health status is now stochastic. We plan the treatment using
MPC with η = 104 and compare the results to those generated by the naive approach,
which simply solves problem (4) once prior to session 1.

5.2.2. Computational details
We solved problem (11) using Algorithm 4.1 with λ = 104 and ε = 10−3. For the initial
dose in session 1, we chose d0 = 0. In each subsequent session t, we set d0 to be the (trun-
cated) optimal dose point from the previous session, (d	t , . . . , d	T). With these parameters,
the algorithm took an average of 7 iterations per session to achieve convergence; most runs
completed in only 3–4 iterations. The total runtime was 116 seconds.

5.2.3. Results and analysis
Figure 4 depicts the treatment plan output byMPC.Most beams are aimed slightly diagonal
from the vertical, similar to the naive plan (Figure 2) up to session 14. Then, the bundles
of beams start to grow sparser and fan out, hitting more areas of the OARs. This sparse
irradiation pattern continues until the final session, when there is a brief spike in intensity
to bring the target’s health status into the desired range.

In Figure 5(a), we plot the dose trajectories of the MPC plan (green) and the naive plan
(blue). The MPC curves are more jagged with a large spike at the end of treatment. How-
ever, in each structure, the area under the MPC and naive dose curves remains on par.
Thus, we conclude that the MPC plan delivers about the same amount of radiation as the
naive plan, only spread across a wider range of beam angles/intensities so as to compensate
for uncertainty in the health dynamics model.

This strategy results in better patient health as shown in Figure 5(b). The MPC plan
reduces the target’s health status to 0.05, while maintaining the health status of the OARs
at a high level. Indeed, the health of these organs under the MPC plan exceeds their health
under the naive plan by a significant margin in all but structure 4, where the two are
relatively equal up until the last session.

Figure 4. Optimal beam intensities for Example 5.2 using MPC.
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Figure 5. Optimal (a) radiation dose and (b) health status trajectories for Example 5.2 usingMPC (green)
and a naive planning approach (blue). Dashed lines represent the bounds on the dose and health sta-
tus (Dt,i and Ht,i , respectively). The MPC plan’s health trajectories all remain within the desired bounds,
despite the error in the health dynamics model.

6. Operator splitting

MPC enables us to robustly handle uncertainty over time. However, another challenge in
radiation treatment planning is the sheer size of problems, which makes them compu-
tationally difficult to solve in practice. A typical case with K = 15 and n = 104 requires
approximately 105 floating-point operations for the beam-to-dose calculation alone. Over
a month of sessions, that comes out to 4.5 million operations on a single machine.

In this section, we propose a fast, efficient method for solving the radiation treatment
planning problem using operator splitting. Our method is distributed and scales readily
with the number of beams as well as the length of treatment. It can be applied both to the
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original problem (4) and the soft constrained MPC variant (11). Below, we describe the
mathematical details for the former; the latter is a straightforward extension.

6.1. Consensus form

We first rewrite problem (4) in an equivalent consensus form:

minimize
T∑
t=1

φt(dt)+
T∑
t=1

ψt(ht)

subject to ht = ft(ht−1, d̃t), 0 ≤ d̃t ≤ Dt , t = 1, . . . ,T,
ht,i ≤ Ht,i, i ∈ T , ht,i ≥ Ht,i, i /∈ T , t = 1, . . . ,T,
dt = Atbt , 0 ≤ dt ≤ Dt , 0 ≤ bt ≤ Bt , t = 1, . . . ,T,
dt = d̃t , t = 1, . . . ,T

(12)

with additional variable d̃ = (d̃1, . . . , d̃T). This splits the problem into two parts, one that
encapsulates the radiation physics and the other that contains the health dynamics. The
parts share no variables. They are only linked by the consensus constraint, dt = d̃t , which
requires their doses be equal.

6.2. ADMM

We solve problem (12) using an iterative algorithm called the alternating directionmethod
of multipliers (ADMM) [4]. In ADMM, the beams and health statuses are optimized
separately, taking into account the difference between their resulting dose values. This dif-
ference is associated with a dual variable u = (u1, . . . , uT), where each ut ∈ RK , which is
updated every iteration in order to promote consensus.

Algorithm 6.1 ADMM algorithm.

input: initial point (d̃0, u0), parameter ρ > 0.

for k = 0, 1, . . . do
1. Calculate beams. For t = 1, . . . ,T, set the value of (bk+1

t , dk+1
t ) to a

solution of the problem
minimize φt(dt)+ ρ

2
‖dt − d̃kt − ukt ‖22

subject to dt = Atbt , 0 ≤ dt ≤ Dt , 0 ≤ bt ≤ Bt .
2. Calculate health trajectory. Set the value of (hk+1, d̃k+1) to a solution
of the problem

minimize
T∑
t=1

ψt(ht)+ ρ

2
‖d̃ − dk+1 + uk‖22

subject to ht = ft(ht−1, d̃t), 0 ≤ d̃t ≤ Dt , t = 1, . . . ,T,
ht,i ≤ Ht,i, i ∈ T , ht,i ≥ Ht,i, i /∈ T , t = 1, . . . ,T.

3. Update dual variables. uk+1 := uk + d̃k+1 − dk+1.
until stopping criterion (17) is satisfied.
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Here 1/ρ > 0 may be interpreted as the step size. Notice that the first step of
Algorithm 6.1 can be parallelized across sessions.We impose the dose bound constraint on
both the beam and health subproblems because it produces faster convergence in practice.

6.2.1. Initialization
For complex problems, the initial dose point d̃0 can have a significant impact on the per-
formance of Algorithm 6.1. Below, we describe one heuristic that produces a good starting
point by solving a series of simple optimization problems. The idea is to first find the
optimal beams in the static setting, where the entire treatment is delivered in a single ses-
sion, then rescale these static beams each session to form a plan in the dynamic setting.
By limiting ourselves to scaling factors, we significantly reduce the size of the dynamic
problem.

We begin by solving the static treatment planning problem

minimize φ1(d1)+ ψ1(h1)+ μ1Tζ
subject to h1 = f1(h0, d1), ζ ≥ 0,

h1,i ≤ HT,i, i ∈ T , h1,i ≥ HT,i − ζi, i /∈ T ,

d1 = A1b1, 0 ≤ d1 ≤
T∑
t=1

Dt , 0 ≤ b1 ≤
T∑
t=1

Bt

(13)

with respect to b1 ∈ Rn, d1 ∈ RK , h1 ∈ RK , and ζ ∈ RK , where μ > 0 is a slack penalty
parameter. A reasonable choice for μ = 1

K−|T | , assuming there is at least one non-target
structure. Problem (13) is convex and can be easily handled on a single machine (e.g. via
interior-point methods) for up to 105 beams. Denote the optimal beam intensities by bstat.

Next, we consider the dynamic treatment planning problem inwhich the beams for each
session are restricted to be a scalar multiple of bstat,

minimize
T∑
t=1

φt(dt)+
T∑
t=1

ψt(ht)+ μ

T∑
t=1

1Tζt

subject to ht = ft(ht−1, dt), ζt ≥ 0, t = 1, . . . ,T,
ht,i ≤ Ht,i, i ∈ T , ht,i ≥ Ht,i − ζt,i, i /∈ T , t = 1, . . . ,T,
dt = νtbstat, 0 ≤ dt ≤ Dt , νt ≥ 0, t = 1, . . . ,T

(14)

with variables (ν1, . . . , νT), (d1, . . . , dT), (h1, . . . , hT), and (ζ1, . . . , ζT), where each νt ∈ R
and ζt ∈ RK . This problem can be solved using a slight variation on Algorithm 4.1. (For
the initial CCP point, we may use the optimal time-invariant νt = ν when βt = 0; finding
this value entails solving a small convex problem). Since there are only O(TK) variables,
convergence is generally quick, taking less than 5 iterations in our experiments.We use the
resulting doses as our initial dose point for ADMM, i.e. d̃0t = ν	t bstat for t = 1, . . . ,T.

Besides providing a good starting point, this initialization heuristic also gives us a way
to quickly tune problem parameters. If the health trajectory from d̃0 is poor, it is much
faster to modify weights and re-solve problems (13) and (14) than it is to re-run the full
ADMM algorithm.
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6.2.2. Stopping criterion
If problem (12) is convex, then under mild conditions, ADMM converges to a solution
assuming one exists. Moreover, the primal and dual residuals

rkprim = dk − d̃k (15)

rkdual = ρ(d̃k − d̃k−1) (16)

also converge to zero. Thus, a reasonable stopping criterion is

‖rkprim‖2 ≤ εprim and ‖rkdual‖2 ≤ εdual, (17)

where εprim > 0 and εdual > 0 are tolerances for primal and dual feasibility, respectively.
Typically, these tolerances are chosen with respect to absolute and relative cutoffs εabs > 0
and εrel > 0 using the relation

εprim = εabs
√
TK + εrel max(‖dk‖2, ‖d̃k‖2)

εdual = εabs
√
TK + εrel‖uk‖2.

A common choice for εrel = 10−3, while the choice for εabs depends on the scale of the
treatment planning problem [4, § 3.3.1].

6.2.3. Convergence and choice of ρ
When the problem is convex, i.e. the health dynamics function is affine, Algorithm 6.1
converges to a solution for any ρ > 0, although the value of ρ may have an impact on the
practical convergence rate. When the problem is nonconvex, ADMM is a heuristic and the
final beam/dose plan can depend directly on ρ [4, § 9]. The question of how to choose ρ
is still unsettled; see [17,43,44] for further discussion on the topic. We have found that for
data on the order of one, values of ρ between 10−2 and 102 work reasonably well.

6.3. Clinical example

6.3.1. Problem instance
We test our method on a fluence map optimization of a prostate cancer IMRT case with
n = 34848 beams and K = 7 structures consisting of a single PTV (i = 1), five OARs,
and generic body voxels (i = 7). Treatment is carried out over T = 45 sessions, so the
planning problem has about 1.6 million variables. The matrix At remains constant over
time and maps the beam intensities to the average dose per structure, i.e. dt,i is the total
dose to structure idivided by the number of voxels in i. Each beam’s intensity cannot exceed
Bt = 0.025.

The LQ model parameters, initial health status, and dose and health status bounds can
be found in Table 1; these have been adapted from prior clinical datasets [16,22,26,40]. We
choose the health and dose penalty functions to be

ψt(ht) = (ht,1)+ + 1
6

7∑
i=2
(ht,i)−, φt(dt) =

6∑
i=1

d2t,i + 0.25d2t,7, t = 1, . . . ,T.

These penalties place greater importance on reducing the health status of the PTV
compared to sparing the OARs or generic body tissue.
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Table 1. Prostate IMRT problem parameters.

LQ model Health and dose

i Structure αt,i βt,i γt,i h0,i Ht,i Dt,i

1 Prostate 0.15 0.05

{
0 t ≤ 28
0.0173 t > 28

5.8579

⎧⎪⎨
⎪⎩
5.8579 t ≤ 14
4.4716 15 ≤ t ≤ 31
0 t > 31

10

2 Urethra 1 0.2 0 0 −4.8 10
3 Bladder 1 0.2 0 0 −4.8 10
4 Rectum 1 0.2 0 0 −4.8 10
5 L. Femoral Head 1 0.25 0 0 −3.0 10
6 R. Femoral Head 1 0.25 0 0 −3.0 10
7 Body 1 0.3333 0 0 −6.0 10

6.3.2. Computational details
The computational setup is the same as in Example 4.2. To solve the ADMM subprob-
lems, we used MOSEK and ran CCP (λ = 104) on the health trajectory subproblem. With
ρ = 80, ADMM converged in 82 iterations to cutoffs of εabs = 10−2 and εrel = 10−3. The
normed residuals, ‖rkprim‖2 and ‖rkdual‖2, are shown in Figure 6. Total runtime was about 43
minutes, with the bulk of that time spent on themainADMM loop (initialization took only
32 seconds). By contrast, a straightforward application of Algorithm 4.1 to this problem
required over an hour.

6.3.3. Results and analysis
Figure 7 depicts the dose trajectories resulting from the initial plan (green) and the final
plan output by ADMM (blue). The initial plan is essentially a piecewise equal-dose frac-
tionation scheme, reflected by the flat plateaus in the corresponding dose trajectories. This

Figure 6. Primal and dual residual �2-norms for Example 6.3.
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Figure 7. Optimal radiation dose trajectory for Example 6.3. The initial plan (green) depicts the dose
output by the initialization heuristic described in § 6.2, while the final plan (blue) depicts the dose output
by the ADMM algorithm.

already gives us a good approximation of the final plan: both plans maintain a relatively
high dose to the PTV of about 0.9 Gy until session 31, then drop off sharply to the same
constant doses thereafter. However, during the high dose phase, the final plan gradually
increases the dosage over time to all structures except the bladder (i = 3). By adapting
dynamically to changes in the patient’s anatomy, it is able to deliver more dose per session
and thus achieve better tumor control, while still respecting the limits on the OARs’ health
statuses.

Indeed, we see in Figure 8 that the final plan exactly attains the desired PTVhealth status
of zero for t > 31. It must sacrifice some OARs to do this, reducing the health statuses of
the urethra, rectum, and right femoral head (i = 2, 4, and 6) to their lower bounds, but
never violates those bounds. In fact, by shifting radiation to other structures, the final plan
actually improves the health of the bladder over that from the initial plan, which results in
a h3(t) curve far below the limit of−4.8 for t ≥ 35. Overall, it is clear that the combination
of a solid initialization heuristic and ADMM produces a treatment plan that satisfies or
even exceeds all of our clinical goals.

7. Implementation

We provide an implementation of our adaptive radiation treatment planning method
in AdaRad, an open-source Python software package based on CVXPY [10]. Our
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Figure 8. Optimal health trajectories resulting from the doses in Figure 7. Dashed lines represent the
health status bounds Ht,i .

implementation is fully distributed, leveraging Python’s built-inmultiprocessing library to
execute solves in parallel. Users can quickly import patient data, define clinical goals, con-
struct treatment plans, and visualize the results. They can also rapidly modify and re-plan
a case, allowing for comparisons between different prescriptions and treatment lengths.
Moreover, since AdaRad is a Python library, it can be easily integrated with other libraries
(e.g. for image processing) used in radiation therapy.

The code below imports some patient data and a prescription, solves for the optimal
treatment plan, and plots the resulting dose and health trajectories.

import adarad, numpy
from adarad import Case, CasePlotter
# Construct the clinical case.
> case = Case()
> case.import_file("/examples/patient_01-case.yaml")
> case.physics.dose_matrix = numpy.load("/examples/patient_01-dmat.npy")
# Solve using ADMM algorithm.
> status, result = case.plan(slack_weight = 50, max_iter = 100,

solver = ECOS, use_admm = True)
> print("Solve status: {}".format(status))
> print("Solve time: {}".format(result.solver_stats.solve_time))
> print("Iterations: {}".format(result.solver_stats.num_iters))
# Plot the dose and health trajectories.
> caseviz = CasePlotter(case)
> caseviz.plot_treatment(result, stepsize = 10)
> caseviz.plot_health(result, stepsize = 10)



OPTIMIZATION METHODS & SOFTWARE 2319

In this example, the dosematrixAt is the same for all t and stored in a single ∗.npy file.
AdaRad also supports other sparse data representations, such as scipy.csc_matrix.
To specify a time-varying dose matrix, the user would input a list of matrices in order
[A1, . . . ,AT].

We start by constructing a Case, which contains Anatomy, Physics, and
Prescription objects. The Anatomy and Physics must be defined prior to plan-
ning, either by manually specifying them in the code or importing a case description. A
description is a YAML file that contains at minimum the keys treatment_length
and structures, where the latter is a list of anatomical structures i = 1, . . . ,K, each
of which has a name, is_target boolean indicator, and alpha, beta, and gamma
values corresponding to the LQmodel parameters. The initial health status and health and
dose bounds may also be specified.

Once the Case is defined, we can solve for the optimal treatment plan. The plan func-
tion implementsAlgorithms 4.1 and 6.1 (the latterwithuse_admm = True). It takes as
optional inputd_init: the initial dose point,use_slack: a boolean indicating whether
to include slack variable δ, slack_weight: the slack penalty parameter λ, max_iter:
the maximum number of iterations, and solver: the convex solver to use for the beam
and health subproblems. In the above example, we call the solver ECOS [11], one of several
free, open-source solvers packaged with CVXPY. If MOSEK is installed, we can call it as
well by passing solver = MOSEK into the planning function.

After the algorithm finishes, plan saves the results in case.current_plan and
returns the final solve status along with a RunRecord object that carries solver per-
formance data, such as the total runtime, and the optimal variable values. To visualize
the resulting plan, we instantiate a CasePlotter object and call plot_treatment
and plot_health on the RunRecord to display the dose and health trajectories,
respectively. We can also extract the optimal beams, doses, and health statuses with, e.g.
result.beams for further processing.

If wewish to explore alternate plans, we can easilymodify the dose andhealth status con-
straints of any structure and re-plan the case. Re-planning is generally fast, since AdaRad
uses the previously stored solution as a warm start point. In a typical workflow, we may
import a prescription formed from general clinical guidelines, then repeatedly adjust the
dose/health status bounds until we obtain a treatment plan with our desired properties.
The case.current_plan will be updated with the new optimal values after each run.
To keep a history of plans for comparison, we can save our results in the Case by calling
save_plan before re-optimizing. The code below provides an example of changing the
upper dose bound on the PTV to Dti = 10 Gy for all sessions and plotting the dose and
health trajectories under this new constraint alongside the trajectories of the original plan.

# Save previous treatment plan.
> case.save_plan("Original Plan")
# Constraint allows maximum of 10 Gy per session on the PTV.
> case.prescription["PTV"].dose_upper = 10
# Re-plan the case with new dose constraint.
> status2, result2 = case.plan(slack_weight = 50, max_iter = 100,

solver = ECOS, use_admm = True)
> print("Solve status: {}".format(status2))
# Compare original and new treatment plans.
> caseviz.plot_treatment(result2, stepsize = 10, label = "New Plan",

plot_saved = True)
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> caseviz.plot_health(result2, stepsize = 10, label = "New Plan",
plot_saved = True)

For more details on AdaRad’s functions as well as additional examples, see the docu-
mentation at https://github.com/anqif/adarad.

8. Conclusion

To achieve the best outcomes, radiation therapy must adapt to new information about the
patient’s health and anatomyduring treatment.Wehave described onemethod for adaptive
radiation treatment planning using an operator splitting algorithm. Our method is highly
scalable, parallelizable, and can efficiently handle a large number of beams and sessions.
Moreover, it is robust to errors in the patient’s health response model, as well as other
sources of uncertainty in the clinic. We demonstrated its effectiveness on a large prostate
cancer case and showed that the resulting plan improves markedly on a standard equal-
dose fractionation scheme.

Future work will focus on expanding our health response model to include sublethal
damage repair, redistribution, and reoxygenation effects. We will also incorporate dose-
volume constraints into the optimal control problem. Finally, to increase our algorithm’s
speed, we intend to release an implementation that takes advantage of the parallel process-
ing capabilities of the GPU.
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