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Abstract
Background:The importance of robust proton treatment planning to mitigate
the impact of uncertainty is well understood. However, its computational cost
grows with the number of uncertainty scenarios, prolonging the treatment
planning process.
Purpose:We developed a fast and scalable distributed optimization plat-
form that parallelizes the robust proton treatment plan computation over the
uncertainty scenarios.
Methods:We modeled the robust proton treatment planning problem as a
weighted least-squares problem. To solve it, we employed an optimization
technique called the alternating direction method of multipliers with Barzilai–
Borwein step size (ADMM-BB). We reformulated the problem in such a way as
to split the main problem into smaller subproblems, one for each proton ther-
apy uncertainty scenario. The subproblems can be solved in parallel, allowing
the computational load to be distributed across multiple processors (e.g., CPU
threads/cores).We evaluated ADMM-BB on four head-and-neck proton therapy
patients, each with 13 scenarios accounting for 3 mm setup and 3.5% range
uncertainties. We then compared the performance of ADMM-BB with projected
gradient descent (PGD) applied to the same problem.
Results:For each patient, ADMM-BB generated a robust proton treatment plan
that satisfied all clinical criteria with comparable or better dosimetric quality than
the plan generated by PGD.However,ADMM-BB’s total runtime averaged about
6 to 7 times faster. This speedup increased with the number of scenarios.
Conclusions:ADMM-BB is a powerful distributed optimization method that
leverages parallel processing platforms, such as multicore CPUs, GPUs, and
cloud servers, to accelerate the computationally intensive work of robust pro-
ton treatment planning. This results in (1) a shorter treatment planning process
and (2) the ability to consider more uncertainty scenarios, which improves
plan quality.

KEYWORDS
distributed optimization, proton treatment planning, robust optimization

1 INTRODUCTION

Proton treatment planning has been an active topic of
research over the last decade. The sharp dose fall-off
of protons, which makes proton therapy an appealing
treatment modality, also renders it vulnerable to errors
and uncertainties during treatment planning. Conse-
quently,proton plans are usually developed using robust
optimization.1 The dose distribution for each potential

uncertainty scenario (e.g., due to setup or range esti-
mation errors) is computed, then the plan is optimized
to fulfill clinical objectives even in these scenarios.

To produce the most robust plan, we would like to
consider as many scenarios as possible, covering all
potential sources of uncertainty.This presents a number
of computational challenges. First, the more scenarios
we include in the optimization problem, the longer it
will take to solve the problem. This could prolong the
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2 OPTIMIZATION FOR ROBUST PROTON THERAPY

treatment planning process and limit the number of
parameter adjustments (e.g., objective weights, penal-
ties) that we make, which may result in a suboptimal
plan. Second, the memory required to handle all the
desired scenarios could exceed the resources avail-
able to us, especially on a single computing platform.
It is thus of great clinical importance to develop a
fast, distributed, and scalable method for robust proton
treatment planning.

Given the large size of robust optimization problems in
proton therapy, first-order methods like gradient descent
have been the de facto solution technique. In particu-
lar,projected gradient descent (PGD) enjoys widespread
popularity, as it can handle upper and lower bounds
on spot intensities. However, while gradient descent
is widely used, it possesses several weaknesses that
make it undesirable for solving complex, data-intensive
optimization problems.First, it requires the calculation of
the gradient,which may be mathematically cumbersome
or intractable. Second, its convergence depends heavily
on the step size (i.e., the distance moved in the direc-
tion of the gradient), which is typically chosen via a line
search. This line search is computationally demanding
and scales poorly with the size of the problem.Moreover,
the very serial format of the line search makes gradi-
ent descent unamenable to parallelization. Alternative
methods exist for step size selection,2–5 but in general,
optimization practitioners turn to the class of distributed
algorithms to solve very large problems.

In distributed optimization, multiple agents (e.g.,
CPUs) collaborate to solve an optimization problem. A
typical algorithm will decompose the problem into parts
and distribute each part to an agent, which carries out
its computation using local information.The agents then
combine their results to produce a solution. Due to the
use of many agents, these algorithms scale remark-
ably well: Their computational demands increase very
modestly with the size and complexity of the prob-
lem. Consequently, distributed optimization has been an
active topic of research for decades,6–9 and distributed
algorithms have been applied in a variety of fields.10–13

The alternating direction method of multipliers
(ADMM) is a distributed optimization algorithm dating
back to the 1970s.14–16 It has seen renewed inter-
est over the last few years, thanks to its success in
solving large-scale optimization problems that arise
in data science and machine learning.17–21 The key
to ADMM’s success is its ability to split a problem
into smaller subproblems, which can be solved inde-
pendently from each other, making it ideal for parallel
computation.A clever split can also yield mathematically
simple subproblems that permit a closed-form solu-
tion. Recently, Zarepisheh, Xing, and Ye22 introduced a
new variant of ADMM with improved convergence prop-
erties and evaluated its performance on fluence map
optimization problems in intensity modulated radiation
therapy (IMRT). They showed that ADMM outperforms
other optimization techniques, including an active-set

method (FNNLS), a gradient-based method (SBB), and
an interior-point solver (CPLEX). This demonstrates the
potential of ADMM to efficiently handle large treatment
planning problems.

Our paper extends the application of ADMM to robust
proton treatment plan optimization. In particular, we
exploit the special structure of the robust optimiza-
tion problem, which enables us to reformulate the
problem and split it into smaller subproblems, each cor-
responding to a separate uncertainty scenario. A major
difference between our study and the aforementioned
study by Zarepisheh, Xing, and Ye is that we implement
a fully parallelized version of ADMM that distributes
the workload required to solve these subproblems
across multiple CPU threads/cores. This allows us to
achieve a greater and more consistent speed advan-
tage over PGD. More importantly, we show that our
ADMM algorithm scales well with the number of scenar-
ios, making it possible to include many different sources
of uncertainty in the treatment planning process.

2 METHODS

2.1 Problem formulation and gradient
descent

Suppose we have N scenarios, including the nominal
scenario, represented by dose-influence matrices As ∈

Rm×n
+ for s = 1,… , N. Here m is the number of voxels

and n is the number of beamlets. Let as,i ∈ Rn
+ be row i

of As, corresponding to voxel i. The prescribed dose to
each voxel is given in the form of a vector p ∈ Rm

+ ,where
pi is equal to the prescription (i.e., a constant scalar
Dpres > 0) for target voxels and zero for nontarget voxels.
Our objective is to find spot intensities x ∈ Rn that min-
imize the deviation between the actual and prescribed
dose across all scenarios.

Formally, let us define the scenario-specific objective
function to be

fs(x) :=
m∑

i=1

wi‖aT
s,ix − pi‖2

2, (1)

where wi ≥ 0 is the relative importance weight on voxel
i. While in principle, different voxels within a structure
can admit different weights, in our model, we assign the
same weight to all voxels in a structure and only allow
weights to vary across structures. Our goal is to solve
the optimization problem

minimize f (x) :=
N∑

s=1

fs(x)

subject to x ≥ 0 (2)

with variable x ∈ Rn. Here, we have assumed all sce-
narios occur with equal probability. It is straightforward
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OPTIMIZATION FOR ROBUST PROTON THERAPY 3

to incorporate differing probabilities by replacing wi with
scenario-specific weights w̃s,i := cswi , where cs ∈ [0, 1]
is the probability of scenario s.

PGD starts from an initial estimate of the spots x(0) ∈

Rn
+ and iteratively computes

∇f (x(k)) =
N∑

s=1

m∑
i=1

2wias,i(a
T
s,ix

(k) − pi), (3)

x(k+1) = max(x(k) − 𝜌(k)∇f (x(k)), 0), (4)

where 𝜌(k) > 0 is the step size in iteration k, selected
using a line search technique such as Armijo [23,section
3.1] to ensure improvement in the objective value.Armijo
line search starts from an initial step size 𝜌(k) = 𝛼 and
shrinks the step size by a factor of 𝛾 until it produces
x(k+1) that satisfies

f (x(k+1)) ≥ f (x(k)) + 𝛽∇f (x(k))T (x(k+1) − x(k)). (5)

Here, 𝛼 > 0, 𝛽 ∈ (0, 1), and 𝛾 ∈ (0, 1) are fixed param-
eters. PGD proceeds until some stopping criterion is
reached, typically when the change in the objective
value, |f (x(k)) − f (x(k+1))|, falls below a user-defined
cutoff.

The gradient of each scenario’s objective function,

∇fs(x(k)) =
m∑

i=1

2wias,i(a
T
s,ix

(k) − pi), (6)

can be computed in parallel, that is, simultaneously
on different processing units (CPUs, GPUs, etc), and
summed up to obtain the gradient of the full objec-
tive, ∇f (x(k)). However, the Armijo condition 5 must be
checked and updated serially, creating a bottleneck in
any parallel implementation of PGD.

2.2 Distributed ADMM

To apply ADMM to problem 2, we must first reformu-
late it so the objective function is separable. The current
objective f (x) consists of a sum of scenario-specific
objectives fs(x), which share the same variable x. We
will replace x with new variables x1,… , xN ∈ Rn, rep-
resenting the scenario-specific spots, and a so-called
consensus variable z ∈ Rn.We then introduce a consen-
sus constraint xs = z for s = 1,… , N to ensure the spot
intensities are equal. This results in the mathematically
equivalent formulation

minimize
N∑

s=1

fs(xs)

subject to xs = z, s = 1,⋯, N,

z ≥ 0. (7)

The objective function in problem 7 is separable across
scenarios: The only link between {fs(xs)}N

s=1 is the
requirement that x1 = ⋯ = xN = z. However, even with
the consensus constraint, ADMM is able to split this
problem into independent subproblems. The reader
is referred to S. Boyd et al. (2011)15 for a detailed
description of ADMM.

ADMM starts from an initial estimate of the spot inten-
sity vector z(0) ∈ Rn

+, the constant parameter 𝜌 > 0, and

the dual variables y(0)
s ∈ Rn for s = 1,… , N. (The value

1∕𝜌 is known as the step size.) In each iteration k =

0, 1, 2,…

1. For s = 1,… , N, solve for the scenario spot
intensities

x(k+1)
s = arg min

xs
fs(xs) +

𝜌

2
‖xs − z(k) + y(k)

s ∕𝜌‖2
2. (8)

2. Project the average of the scenario spot intensities
onto the nonnegative orthant:

z(k+1) = max

(
1
N

N∑
s=1

x(k+1)
s , 0

)
. (9)

3. For s = 1,… , N, update the dual variables

y(k+1)
s = y(k)

s + 𝜌(x(k+1)
s − z(k+1)). (10)

4. Terminate if stopping criterion 14 is satisfied and
return x⋆ = z(k+1) as the solution.

Notice that the scenario subproblems 8 can be solved
in parallel.

2.2.1 Solving the subproblems

Subproblem 8 is an unconstrained least-squares prob-
lem with a closed-form solution x(k+1)

s , which can be
obtained by solving a system of linear equations of the
form B(s)x(k+1)

s = c(k), where B(s) ∈ Rn×n
+ is an iteration-

independent symmetric positive definite matrix and
c(k) ∈ Rn

+. This system is sometimes referred to as
the normal equations. Since the value of B(s) remains
the same throughout the ADMM loop, we can solve
subproblem 8 efficiently by forming the Cholesky fac-
torization of B(s) once prior to the start of ADMM
and caching it, then using backward substitution to
calculate x(k+1)

s each iteration. This reduces the com-
putational load and ensures our subproblem step is
still parallelizable. See the Appendix for mathematical
details.
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4 OPTIMIZATION FOR ROBUST PROTON THERAPY

2.2.2 ADMM with Barzilai–Borwein (BB)
step size

While ADMM will converge for any 𝜌 > 0, the value of 𝜌
often has an effect on the practical convergence rate. In
some cases,allowing 𝜌 to vary in each iteration will result
in faster convergence.One popular method for selecting
a variable step size is the BB method.24–26 This method
has shown great success when combined with ADMM.22

The BB step size in iteration k is given by

𝛽(k) = −
Δd(k)TΔy(k)‖Δd(k)‖2

2

, (11)

where Δy(k) = y(k) − y(k−1) and Δd(k) = (x(k+1) −

z(k+1)) − (x(k) − z(k)). If 𝛽(k) > 0, we use it in place
of 𝜌 in our dual variable update 10. Otherwise, we revert
to the user-defined constant 𝜌 > 0.

Note that subproblem 8 always uses the default 𝜌,
since for speed purposes, we do not recompute the
Cholesky factorization each iteration. In addition, the BB
step size is calculated using simple linear algebra, not
the serial loop required by a backtracking line search
(e.g., Armijo). As we will see in Section 3, this gives
ADMM a significant advantage over PGD in terms of
runtime and memory efficiency.

2.2.3 Stopping criterion

The convergence of ADMM with variable step size is
still an active topic of research.27–29 In our algorithm,
we employ a stopping criterion based on the optimality
conditions of problem 7,which we have observed works
well in practice. This translates into checking whether
the residuals associated with these conditions,

r (k)
prim = (x(k)

1 − z(k),… , x(k)
N − z(k)), (12)

r (k)
dual = (𝜌(z(k) − z(k−1)),… , 𝜌(z(k) − z(k−1))), (13)

are close to zero. (Here, rprim is referred to as the pri-
mal residual and rdual as the dual residual.) Thus, a
reasonable stopping criterion is

‖r (k)
prim‖2 ≤ 𝜖prim, ‖r (k)

dual‖2 ≤ 𝜖dual (14)

for tolerances 𝜖prim > 0 and 𝜖dual > 0. These tolerances
are typically chosen with respect to user-defined cutoffs
𝜖abs > 0 and 𝜖rel > 0 using

𝜖prim = 𝜖abs

√
Nn + 𝜖rel max(‖x(k)‖2,

√
N‖z(k)‖2), (15)

𝜖dual = 𝜖abs

√
Nn + 𝜖rel‖y(k)‖2, (16)

TABLE 1 Head-and-neck cancer patient information

Patient
1 2 3 4

Beam configuration 40◦, 320◦ 220◦, 320◦ 30◦, 60◦ 30◦, 300◦

CTV volume (cm3) 91.4 2.8 72.9 59.5

Number of voxels (m) 98 901 50 728 119 258 126 072

Number of spots (n) 5762 707 4697 3737

where x(k) := (x(k)
1 ,… , x(k)

N ) and y(k) := (y(k)
1 ,… , y(k)

N ).
Intuitively, we want to stop when (1) the scenario-
specific spots are approximately equal (r (k)

prim ≈ 0 implies

x(k)
1 ≈ … ≈ x(k)

N ≈ z(k)) and (2) the most recent iteration
of ADMM yielded little change in the spot intensities
(r (k)

prim ≈ 0 implies z(k) ≈ z(k−1)). This indicates that the
optimality conditions for problem 7 have been fulfilled.
We refer the reader to section 3.3 of S. Boyd et al.
(2011)15 for a derivation of the stopping criterion.

2.3 Patient population and
computational framework

We tested our ADMM algorithm with BB step size
(ADMM-BB) on four head-and-neck cancer patient
cases from The Cancer Imaging Archive (TCIA).32,33

For each patient, only the primary clinical target volume
(CTV) was considered in the optimization, with a pre-
scribed dose of Dpres = 70 Gy delivered in 35 fractions
of 2 Gy per fraction. Dose calculations were performed
in MATLAB using the open-source software MatRad and
the pencil beam dose calculation algorithm.34,35 The
proton spots were placed on a rectangular grid, cover-
ing the planning target volume (PTV) region plus 1 mm
out from its perimeter with a spot spacing of 5 mm. All
patients were planned using two coplanar beams. See
Table 1 for more details.

To create uncertainty scenarios, we simulated range
over- and undershoots by rescaling the stopping power
ratio (SPR) image ±3.5% following typical range margin
recipes used in proton therapy.36,37 We also simulated
setup errors by shifting the isocenter ±3 mm in the x, y,
and z direction. Combining the range and setup errors
gave us a total of 13 scenarios, including the nominal
scenario. For each scenario, we computed the dose-
influence matrix using a relative biological effectiveness
(RBE) of 1.1.

We implemented PGD and ADMM-BB in Python using
the built-in multiprocessing library. This library sup-
ports parallel computation across multiple CPUs and
CPU threads/cores. The algorithms were executed on
a server with 2 Intel Xeon Gold 6248 CPUs @ 2.50 GHz
/ 20 cores and 128 GB RAM. We terminated PGD when
the relative change in the objective value was about
10−4 to 10−5. For ADMM-BB, we combined this same
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OPTIMIZATION FOR ROBUST PROTON THERAPY 5

F IGURE 1 Objective function value versus algorithm runtime (s) for all patient cases

criterion with the residual stopping criterion 14 using
𝜖abs = 𝜖rel = 10−6.

3 RESULTS

3.1 Algorithm runtime comparisons

Figure 1 shows the objective function value over the
course of the total runtime of PGD and ADMM-BB,
for all four patients. Clearly for all patients, ADMM-BB
converges much faster than PGD to approximately the
same objective value. On patient 1, a relatively large
case,ADMM-BB took 8.3 min to converge,whereas PGD
required 50 min to achieve roughly the same objective.
For a smaller case like patient 2, ADMM-BB converged
in 31 s, while PGD required 241 s. Altogether across all
patients, ADMM-BB converged on average six to seven
times faster than PGD to a very similar objective and
spot intensities—a significant speedup.

3.2 Treatment plan comparisons

Figures 2 and 3 compare the treatment plans produced
by PGD and ADMM-BB for patient 2. Figure 2 depicts
the DVH bands: Each band, color-coded to a particular
structure, represents the range of DVH curves across
all 13 scenarios, while the corresponding solid curve is
the DVH in the nominal scenario.The vertical dotted line
marks the prescription Dpres = 70 Gy. It is clear from
an inspection of the figure that PGD and ADMM-BB
converge to near-identical DVH bands. The only differ-
ence is that ADMM-BB achieves a tighter CTV band

around Dpres at the expense of a slight increase in
the mean dose to the right parotid (Figure 2). Figure 3
shows the box plots of a few dose-volume clinical met-
rics for this patient. The box plots depict the value of
the metric for each of the 13 uncertainty scenarios. The
dotted line represents the clinical constraint for the met-
ric; this line is a lower bound for D98% on the CTV
and an upper bound for all other metrics. (See Table 2
for a full description of the criteria.) It is apparent from
the plots that both PGD and ADMM-BB produce robust
plans that respect the clinical constraints in nearly all
scenarios. On the OAR metrics, PGD and ADMM-BB
achieve similar performance: The mean doses to the
right parotid and the constrictors are nearly identical,
while the maximum dose to the mandible is slightly lower
for ADMM-BB. However, ADMM-BB outperforms PGD
on the CTV metrics.

Figures 4 and 5 depict the DVH bands and clinical
metrics for patient 4. Again, the PGD and ADMM-
BB treatment plans are nearly identical. ADMM-BB

TABLE 2 Recommended clinical dose bounds for
head-and-neck cancer patients38

Structure Dose constraint

CTV D98% > 66.5 Gy

Dmax < 77 Gy

D3% < 74.9 Gy

Parotid Dmean < 20 Gy

Mandible Dmax < 70 Gy

Larynx Dmean < 45 Gy

Constrictors Dmean < 50 Gy
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6 OPTIMIZATION FOR ROBUST PROTON THERAPY

F IGURE 2 Dose-volume histogram (DVH) bands across all scenarios for patient 2

F IGURE 3 Dose-volume clinical metrics for patient 2. The box plot spans the values over the 13 uncertainty scenarios, with the orange line
indicating the median. The dotted lines mark the clinical constraints: Higher is better for D98% on the CTV, while lower is better for all other
metrics.

produces a tighter CTV band below 70 Gy, indicating
superior robustness, at the expense of a somewhat
wider DVH band on the mandible. The box plots of the
dose-volume metrics for the ADMM-BB plan are also
largely within the desired clinical constraints, and the

CTV box plots in particular show an improvement over
those of PGD (Figure 4), similar to what we saw in
patient 2. The PGD and ADMM-BB treatment plans for
other patients reflect the same pattern; we have omitted
them here for brevity. Overall, we see that ADMM-BB
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OPTIMIZATION FOR ROBUST PROTON THERAPY 7

F IGURE 4 Dose-volume histogram (DVH) bands across all scenarios for patient 4

F IGURE 5 Dose-volume clinical metrics for patient 4. The box plot spans the values over the 13 uncertainty scenarios, with the orange line
indicating the median. The dotted lines mark the recommended clinical constraints: Higher is better for D98% on the CTV, while lower is better for
all other metrics.

produces plans identical to or better than the plans
produced by PGD, but in a fraction of the runtime.

3.3 Scalability over multiple scenarios

Not only is ADMM-BB faster than PGD, it also scales
better with the number of scenarios. Figure 6 shows
the time required by PGD and ADMM-BB to produce
a treatment plan for patient 4 for different numbers of

scenarios in the optimization problem. Specifically, we
solved problem 2 for N ∈ {1, 2,… , 13} and recorded the
total runtime in each case. Parallelization in ADMM-BB
was carried out across the included scenarios. It is clear
from the figure that ADMM-BB outperforms PGD by a
wide margin. ADMM-BB’s runtime increases modestly
from 17.3 s at N = 1 to 111.2 s at N = 13. By contrast,
PGD goes from 273.4 s at N = 1 to 1359.4 s at N = 13.
At its peak, ADMM-BB is over 12 times faster than PGD.
This pattern holds true for all the other patients as well.
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8 OPTIMIZATION FOR ROBUST PROTON THERAPY

F IGURE 6 Algorithm runtime (s) versus number of scenarios
(N) for patient 4’s treatment plan

4 DISCUSSION

In this study, we presented a distributed optimiza-
tion method for solving robust proton treatment plan-
ning problems. Our method splits the problem into
smaller parts, which can be handled on separate
machines/processors, allowing us to reduce the overall
planning time and overcome the limits (e.g., memory)
of single-machine computation. As a result, we can effi-
ciently plan large patient cases with many voxels and
spots. We can also consider more uncertainty scenar-
ios for any given patient, enabling us to produce more
robust treatment plans.

We have used PGD as our benchmark for com-
parison because it is commonly employed to solve
unconstrained treatment planning problems.39–42 More
advanced versions of gradient descent,such as the non-
linear conjugate gradient (CG) method and Nesterov-
accelerated gradient descent, can also be applied to
problem 2. While these algorithms may work better than
PGD, they possess the same dependence on the line
search step,23,43 which was the main source of com-
putational burden in our experiments. A variant of PGD
exists that uses the BB step size.44 The removal of line
search does speed up PGD, but experiments show that
ADMM-BB still generally converges faster in a nondis-
tributed setting.22 In sum, both the ADMM subproblem
decomposition and the BB step size combine to give
ADMM-BB a clear advantage over gradient descent.

Another advantage of ADMM is that it supports a
wide variety of constraints. While PGD can only han-
dle box constraints (i.e., upper and lower bounds on
the spot intensities), ADMM can easily be modified to
handle any type of linear constraint, such as maximum
and mean dose constraints. More advanced versions
of ADMM can also handle nonlinear constraints.45–47

Other optimization algorithms exist that support lin-
ear/nonlinear constraints (e.g., interior point method,48

sequential quadratic programming23),but generally, they
require the calculation of the Hessian matrix, which is

computationally expensive for robust treatment plan-
ning problems.

In our formulation, we have chosen to split problem 2
by scenarios. It is also possible to split the problem by
voxels, for example, create a separate subproblem for
each target and organ at risk. Indeed, there are multi-
block versions of ADMM that allow arbitrary splitting
along rows and columns,49–52 so we can theoretically
accommodate any partition of voxels/spots. This is a
natural direction for future research.

Finally, we plan to extend the implementation of
ADMM-BB to other platforms. Our current software
implementation parallelizes computation across multi-
ple CPUs and CPU cores. We intend to add support
for parallelization across GPUs, which should produce
further speed improvements.With the rise of cloud com-
puting, data storage and processing are increasingly
moving to remote high performance computing (HPC)
clusters. Our long-term goal is to implement ADMM-
BB on these clusters, so that each subproblem (and
its corresponding portion of the data) is handled by a
separate machine or group of machines in the cluster.
This will allow us to solve treatment planning problems
of immense size. We foresee ADMM-BB’s application
in many data-intensive treatment environments, such
as beam angle optimization and volumetric modulated
arc therapy (VMAT), as well as more recent treatment
planning modalities like 4𝜋53 and station parameter
optimized radiation therapy (SPORT).54

5 CONCLUSIONS

We have developed a fast, distributed method for
robust proton treatment planning. Our method splits the
treatment planning problem into smaller subproblems,
which can then be solved in parallel, improving runtime
and memory efficiency. Moreover, we showed that the
method scales well with the number of uncertainty sce-
narios. These advantages allow us to (1) shorten the
time required by the treatment planning process, (2)
incorporate more uncertainty scenarios into the robust
optimization problem, and (3) improve plan quality by
exploring a larger space of parameters.
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APPENDIX
We are interested in solving problem 8:

minimize
m∑

i=1

wi‖aT
s,ixs − pi‖2

2 +
𝜌

2
‖xs − z(k) + y(k)

s ∕𝜌‖2
2

(A1)

with respect to xs ∈ Rn, where z(k) ∈ Rn
+, y(k)

s ∈ Rn, and
𝜌 > 0 is a parameter. This is an unconstrained least-
squares problem. Expand the objective function out to
get

m∑
i=1

wi‖aT
s,ixs − pi‖2

2 +
𝜌

2
‖xs − z(k) + y(k)
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2
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√

𝜌

2
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2

2

=
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2
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(z(k) − y(k)
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, (A2)

where we define

Ãs := diag(
√

w)As, p̃ := diag(
√

w)p. (A3)

Here diag(
√

w) is a diagonal matrix with (
√

w1,… ,
√

wm)
on the diagonal.

By the normal equations, a solution x(k+1)
s of prob-

lem 8 must satisfy

(
ÃT

s Ãs +
𝜌

2
I
)

⏟⎴⎴⎴⏟⎴⎴⎴⏟
Bs

x(k+1)
s = ÃT

s p̃ +
𝜌

2

(
z(k) − y(k)

s ∕𝜌
)

⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟

c(k)
s

. (A4)

Since Bs is positive definite (because 𝜌 > 0), such a
solution always exists. One way to find x(k+1)

s is to form
the Cholesky decomposition of Bs and apply backward
substitution to the triangular matrices.More precisely,we
find an upper triangular matrix U ∈ Rn×n that satisfies
Bs = UUT .Then,we solve the system of equations Uv =

c(k)
s for v and UTx(k+1)

s = v for x(k+1)
s . These two solves

can be done very quickly via backward substitution.
Notice that U need only be computed once at the start
of ADMM, as Bs remains the same across iterations,
so subsequent solves of problem 8 simply require us
to update c(k)

s and solve the two triangular systems
of equations.
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