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Abstract

In 2020, over 1.8 million new cases of cancer were diagnosed in the United States, and

of these cases, a majority were treated with radiation therapy. Radiation treatment

involves fundamental tensions between tumor coverage and damage to surrounding

healthy tissue. To mitigate the ill effects, treatment is typically carried out over

several weeks, giving the patient time to recover in between sessions. However, this

recovery time comes at the risk of tumor proliferation. The clinician’s task is to design

an individualized treatment plan that adapts to changes in the patient’s health caused

by these factors, as well as other unforeseen forces, to achieve the best therapeutic

outcome.

In this dissertation, we present an optimization-based framework for adaptive

radiation treatment planning. We focus on two specific planning challenges: (1) sat-

isfying dose-volume (i.e., percentile) constraints and (2) handling nonlinear patient

health dynamics. For each situation, we show how to formulate the treatment plan-

ning problem as a nonconvex optimization problem and obtain a good estimate of the

solution by solving a series of convex approximations. We demonstrate the effective-

ness of our method on several clinical examples. Finally, we release an open-source

Python software package that implements our method using generic convex solvers.

The last part of this dissertation concerns applications of optimization beyond

radiation therapy. We develop a domain-specific language (DSL) for formulating and

solving a broad class of convex optimization problems. Then, we describe an imple-

mentation of our DSL in R, a popular programming language for statistical modeling

and analysis. Our resulting software package, CVXR, allows users to construct opti-

mization problems in a natural mathematical syntax. CVXR automatically verifies
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the problem’s convexity and converts it into the standard form required by a specific

solver. We illustrate CVXR’s modeling framework with a variety of examples drawn

from statistics, finance, engineering, and radiation treatment planning.
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Chapter 1

Introduction

The bulk of this dissertation concerns the use of optimization in radiation therapy.

External beam radiation therapy is the treatment of diseased tissue with beams of

ionizing radiation delivered from a source outside the patient. When radiation passes

through the patient, it damages both healthy and diseased tissue. A treatment plan

must be carefully designed to minimize harm to healthy organs, while delivering

enough dose to kill the diseased cells. With recent hardware advances, delivery beams

can be positioned and shaped with sophistication, and clinicians increasingly rely on

optimization techniques to guide their treatment decisions. We focus on one part of

the treatment planning process: the selection of an optimal intensity profile for every

radiation beam.

The basic radiation treatment planning problem is convex and tractable. However,

additional clinical objectives, penalty terms, and constraints render it nonconvex.

In Chapter 2, the nonconvexity we address comes from dose-volume constraints, or

constraints on the dose delivered to a percentile of an anatomical structure. We handle

such constraints by replacing them with a convex restriction and using the solution to

the restricted problem to obtain a plan that meets the dose-volume constraints with

minimal gap. The material in this chapter is based on joint work with Barıs. Ungun,

Lei Xing, and Stephen Boyd in Fu et al. (2019). My main contributions to this project

were the mathematical modeling, algorithm characterization, and write-up.

In Chapter 3, we consider the problem of radiation treatment planning over time.
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CHAPTER 1. INTRODUCTION 2

The nonconvexity we address in this setting arises from patient health dynamics

that are nonlinear. We formulate the dynamic treatment planning problem as an

optimal control problem and show how to obtain an approximate solution by solving a

sequence of convex optimization problems. We then propose a solution method based

on the operator splitting algorithm ADMM. Our method is fast, scalable, and robust,

adapting readily to changes in the patient’s condition between treatment sessions.

The material in this chapter is drawn from joint work with Lei Xing and Stephen

Boyd in Fu et al. (2021). I co-developed the planning algorithm, implemented it in

Python, and ran all the experiments.

In Chapter 4, we shift gears to study convex optimization beyond radiation ther-

apy. Specifically, we focus on the design of a domain-specific language (DSL) for

disciplined convex optimization in R, a programming language widely used by statis-

ticians. We describe our implementation of CVXR, an object-oriented R package that

allows users to formulate and solve a broad class of convex optimization problems.

We demonstrate CVXR’s efficacy with several examples from statistics, finance, en-

gineering, and medicine. The material in this chapter is adapted from joint work

with Balasubramanian Narasimhan and Stephen Boyd in Fu et al. (2020a). I was the

principal software developer and tester of CVXR, along with the author of a number

of examples.



Chapter 2

Radiation Treatment Planning

with Dose-Volume Constraints

2.1 Introduction

In this chapter, we present a convex optimization framework for radiation treatment

planning with dose constraints. We describe a method for uniformly handling mean

dose, maximum dose, minimum dose, and dose-volume (i.e., percentile) constraints

as part of our convex formulation. Since dose-volume constraints are nonconvex, we

replace them with a convex restriction. This restriction is, by definition, conservative;

to mitigate its impact on the objective, we develop a two-pass planning algorithm

that allows each dose-volume constraint to be met exactly on a second pass if its

corresponding restriction is feasible on the first pass. In another variant, we add slack

variables to each dose constraint to prevent the problem from becoming infeasible

when the user specifies an incompatible set of constraints or when the constraints

are made infeasible by our restriction. Finally, we introduce ConRad, a Python-

embedded open-source software package for convex radiation treatment planning.

ConRad implements the methods described above and allows users to construct and

plan cases through a simple interface.

Radiation treatment planning is a well-studied problem; see Shepard et al. (1999)

for a comprehensive survey of several problem formulations in the literature, including

3



CHAPTER 2. PLANNING WITH DOSE-VOLUME CONSTRAINTS 4

linear (Rosen et al., 1991; Hölder, 2003) and quadratic programming models (J. et al.,

1990; Xing and Chen, 1996; Xing et al., 1998). Generally, linear models minimize

the weighted sum of doses or the maximum deviation from a prescribed dose, while

quadratic models minimize the weighted sum of squared difference between actual

and prescribed dose. These formulations incorporate linear bounds on the dose to

each structure. Solutions can be rapidly found using various interior point methods,

such as primal-dual (Aleman et al., 2010), projected gradient (Aleman et al., 2013),

and interior point constraint generation (Oskoorouchi et al., 2011).

To address conflicting clinical goals, researchers have proposed models with mul-

tiple objectives and constraints. By varying the weight on each objective, one can

produce a set of solutions on the Pareto frontier (Hamacher and Küfer, 2002; Halabi

et al., 2006a). A large number of treatment evaluation criteria can be transformed

into convex criteria within this framework (Romeijn et al., 2004). Although multi-

objective optimization offers flexibility, calculating thousands of points on the Pareto

frontier proves computationally inefficient in practice, and expert judgment is still

required to select a clinically acceptable plan from the set of mathematically optimal

plans.

All the methods discussed so far hinge on a convex problem formulation. However,

many clinically relevant constraints are nonconvex. One such type is the dose-volume

constraint, which bounds the dose delivered to a given percentage of a patient’s

anatomy (Zarepisheh et al., 2014). A review of some models for handling this class

of constraints is provided in Ehrgott et al. (2008). The simplest approach is to add

a nonlinear, volume-sensitive penalty to the objective function (Cho et al., 1998;

Spirou and Chui, 1998). Then, a local search algorithm, such as the conjugate gra-

dient method (Xing and Chen, 1996; Xing et al., 1998; Shepard et al., 2000b) or

simulated annealing (Webb, 1989, 1992; Mageras and Mohan, 1993), is used to solve

the optimization problem. Unfortunately, since this formulation is nonconvex, these

algorithms often produce a local minimum, resulting in a sub-optimal treatment plan

(Deasy, 1997; Wu and Mohan, 2002). Another method is to directly model the dose-

volume constraint with a set of binary decision variables. Each variable indicates

whether a voxel should be included in the fraction of a structure’s volume that must
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fulfill the dose bound (Langer et al., 1990; Lee et al., 2000, 2003). Given the dimen-

sions of patient data, this results in a large-scale mixed-integer programming problem,

which is prohibitively expensive to compute for most clinical cases.

A more promising approach is to replace each dose-volume constraint with a con-

vex approximation. This allows users to take advantage of large-scale convex opti-

mization algorithms to quickly generate treatment plans. For instance, Halabi et al.

(2006a) substitutes a ramp function for the indicator that a particular voxel violates

its desired dose-volume threshold, then penalizes the total number of voxel viola-

tions in the objective. Other researchers have employed the conditional value-at-risk

(CVaR), a metric that represents the average tail loss in a probability distribution

(Rockafellar and Uryasev, 2000). It is convex in the loss variable and thus offers

a computationally suitable alternative to the dose-volume constraint. In the recent

literature, CVaR has been used to formulate linear constraints on the average dose

in the upper and lower tails of a structure’s dose distribution, leading to significant

improvements in treatment plans (Romeijn et al., 2003, 2006; Chan et al., 2014).

However, CVaR functions are parametric, and implementations of this model require

a heuristic search over the parameter space to obtain a good approximation of the

dose-volume constraint (Ahmed et al., 2010).

Perhaps the method most similar to ours is Zarepisheh et al. (2013). In this paper,

the authors propose constraining the dose moments to equal those of the desired dose-

volume histogram curve. They derive a convex relaxation of these constraints, then

solve their treatment planning problem in two phases: the first phase adds slack

variables to the moment bounds, so a solution is always feasible, while the second

phase tightens these bounds in order to improve upon plan quality whenever possible.

Using only three moments, their technique is able to closely match the reference

histogram curves in a prostate cancer case.

2.2 Problem description

During external beam radiation therapy, ionizing radiation travels through a pa-

tient, depositing energy along the beam paths. Radiation damages both diseased and
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healthy tissue, but clinicians aim to damage these tissues differentially, exploiting the

fact that cancer cells typically have faulty cell repair mechanisms and exhibit a lower

tolerance to radiation than healthy cells. The goal is to focus radiation beams such

that enough dose is delivered to kill diseased tissue, while avoiding as much of the

surrounding healthy organs as possible. The clinician separates these structures into

one or more planning target volumes (PTVs) to be irradiated at a prescribed dose

level and several organs-at-risk (OARs) to spare from radiation.

Before treatment, the patient is positioned on a couch. Photon, electron, proton,

or heavier particle beams are generated with a particle accelerator and coupled to a

mechanized gantry that contains additional hardware components, which shape and

focus the beams. The gantry typically rotates around one central axis (but may

have additional rotational and translational degrees of freedom (Mackie et al., 1993;

Glide-Hurst et al., 2013; Jr et al., 1998)), so that by controlling the gantry and couch,

beams can be delivered from almost any angle and location around the patient.

Delivery strategies vary from using a large number of apertures (beam shapes)

delivered sequentially from a few beam angles, as in intensity-modulated radiation

therapy (IMRT), to calculating a single optimal aperture at a large number of angles,

as in volumetric modulated arc therapy (VMAT). For a given delivery strategy, the

goal of treatment planning is to determine the optimal beam angles, shapes and

intensities that most closely approximate a desired dose distribution to the targeted

volumes. In this work, we consider the task of optimizing intensities for a given set of

beams of known positions and shapes, i.e., calculating optimal beam weights. This is

applicable to the fluence map optimization (FMO) step in IMRT planning, the FMO

step in direct aperture optimization for modalities such as VMAT, 4π, or SPORT

(Bedford, 2009; Dong et al., 2013; Li and Xing, 2013), as well as inverse planning

problems for other common modalities such as stereotactic radiosurgery (Shepard

et al., 2000a; Schweikard et al., 2006) or proton beam therapy (Oelfke and Bortfeld,

2001).
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2.3 Clinical planning

2.3.1 Dose physics

Prior to treatment, medical images—such as CT, MRI and PET scans—are collected

to form a three-dimensional image of the patient’s anatomy. This representation is

discretized into regular volume elements, or voxels. The anatomy is then delineated

by clinicians into various structures, and the dose to each structure is considered

during planning. Although the structure contours drawn by clinicians may overlap,

in this work, we associate each voxel with a single structure.

Dose calculation algorithms range from analytical approximations to Monte Carlo

simulations, but in all cases, they provide a model with a linear mapping from beam

intensities to delivered voxel doses. The dose within each voxel is assumed to be

uniform. For each candidate beam, we have an aperture shape that may be further

subdivided, e.g., into regular rectangular subdivisions called beamlets. The intensities

of these beams (or beamlets) are represented in a vector. A patient-specific dose

deposition matrix maps this vector of radiation intensities to the vector of doses

delivered per voxel.

2.3.2 Dose objectives

Given a fixed number of candidate beams, our goal is to determine the beam intensities

that satisfy a clinical objective defined in terms of the dose delivered to each voxel in

the patient anatomy.

Every PTV is prescribed a desired dose, which we wish to deposit uniformly

throughout the target. Delivering too high or too low a dose of radiation has different

clinical consequences, so we introduce separate underdose and overdose penalties for

every PTV. In the case of OARs, a lower dose is always preferable, so we penalize

any dose above zero and omit an underdose penalty term. In addition to clinical

considerations, such as the patient’s medical history and past courses of radiation

therapy, different organs usually exhibit different levels of sensitivity to radiation.

For these reasons, we allow the penalties for each OAR to be scaled independently,



CHAPTER 2. PLANNING WITH DOSE-VOLUME CONSTRAINTS 8

allowing the planner to adjust the relative importance of meeting the dose targets for

each structure separately.

We apply the penalty associated with each structure to every voxel in that struc-

ture, and the objective function of our treatment planning problem tallies these dose

penalties over all voxels in a patient’s anatomy.

2.3.3 Dose constraints

In addition to dose penalties, we allow for hard constraints on the amount of radi-

ation delivered to portions of the patient anatomy. For example, the clinician may

only consider plans in which the spinal column receives a dose below a certain level

because any more will increase the likelihood of injury beyond an acceptable limit.

Basic constraints of this nature take the form of bounds on the mean, minimum,

and maximum dose to a structure. More generally, bounds can be enforced on the

dose to a fraction of the voxels in a structure. These dose-volume constraints restrict

the relative volume that receives radiation beyond a particular threshold, giving the

clinician precise control over the dose distribution. This is especially important when

sparing OARs, since some organs are able to sustain high levels of uniform radiation,

while others will fail unless the radiation is contained to a small fraction of the tissue.

Clinicians typically use a dose-volume histogram (DVH) to assess the quality of a

treatment plan. For every structure, the DVH specifies the percentage of its volume

that receives at least a certain dose. A point (x, y) on the curve indicates that y%

of the total voxels in the structure receives a dose of at least x Gy. Ideally, we want

our structures to receive exactly the prescribed dose throughout their volumes. If the

prescription is d Gy, then our optimal DVH curve for the PTV is a step function with

a drop at (d, 100), and our optimal DVH for each OAR exhibits a drop at (0, 100).

Dose constraints restrict the shape and location of points on the DVH curve.

In Figure 2.1, a lower dose-volume constraint, D(90) ≥ 60, is represented by the

right-facing arrow centered at (60, 90). This ensures that a minimum of 90% of the

structure’s volume receives at least 60 Gy, i.e., y ≥ 90 along the vertical line x = 60.

The PTV’s DVH curve is pushed rightward by this type of constraint. Similarly,
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(a) Lower Dose-Volume Constraint
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(b) Upper Dose-Volume Constraint

0 20 40 60 80 100
Dose (Gy)

0

20

40

60

80

100

Pe
rc

en
til

e 
(%

)
Figure 2.1: (a) A lower DVH constraint ensures at least 90% of the structure’s volume
receives at least 60 Gy. The dotted line intersects the curve at (60, 90). (b) An upper
DVH constraint allows at most 33% of the volume to receive at least 12 Gy.

an upper dose-volume constraint, D(33) ≤ 12, is labeled with a left-facing arrow at

(12, 33), which pushes the OAR’s DVH curve leftward, representing the restriction

that y ≤ 33 along the line x = 12. Together, the DVH curves and their respective

dose constraints enable the clinician to easily visualize trade-offs when formulating a

treatment plan.

2.4 Convex formulation

Consider a case with m voxels inside a patient volume and n candidate treatment

beams. Our goal is to determine the beam intensities x ∈ Rn
+ that deliver a vector

of voxel doses y ∈ Rm
+ , which meet a set of clinical objectives. We are given a case-

specific dose influence matrix A ∈ Rm×n
+ that approximates the relationship between

the beams and doses linearly as y = Ax. We refer to the rows of A as ai ∈ Rn
+ for
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i = 1, . . . ,m. The basic inverse treatment planning problem is of the form

minimize f(y)

subject to y = Ax

x � 0

with respect to x and y, where f : Rm → R is a convex loss function chosen to

penalize voxel doses based on the goals of the clinician. Here, the inequality on x

is understood to be applied element-wise. In a typical case, a patient is prescribed

a treatment plan that can be characterized by a vector of doses d ∈ Rm
+ to each

voxel. Our function f then penalizes the deviation of the calculated dose y from the

prescribed dose d, taking into account the different structures inside a patient.

In our formulation, we consider a loss function f(y) =
∑m

i=1 fi(yi) where yi = aTi x

and each fi is a piecewise-linear function

fi(yi) = w−i (yi − di)− + w+
i (yi − di)+.

The parameters w−i and w+
i are the non-negative weights on the underdose and over-

dose, respectively. This penalty structure is common in the literature (Lim and Cao,

2012; Chen et al., 2012) and provided the most efficient software implementation.

Prior to treatment planning, the m voxels in a patient volume are grouped into S

distinct, non-overlapping sets representing the planning target volume (PTV), organs-

at-risk (OARs), and generic non-target tissue (often labeled “body”). Each set Vs
contains all the voxel indices i within a corresponding internal structure with index s.

Together, {Vs}S1 forms a partition of the patient volume, i.e.,
⋃S

1 Vs covers all voxel

indices and Vs1
⋂
Vs2 = ∅ for s1 6= s2. We assume the indices are ordered such that

s = 1, . . . , P ≤ S are targets and the rest non-targets.

For simplicity, we choose our voxel doses and penalties to be uniform within each

structure. We let ds represent the prescribed dose, and w−s and w+
s the underdose

and overdose penalties for all voxels i ∈ Vs. The loss function for our basic inverse
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(a) PTV Loss Function
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Figure 2.2: (a) The loss function for a PTV prescribed ds = 1 with penalties w−s = 1
and w+

s = 2, and (b) the loss function for an OAR with penalty w+
s′ = 1.6.

planning problem is f(y) =
∑S

s=1 fs(yi) where

fs(yi) =
∑
i∈Vs

fi(yi) =
∑
i∈Vs

{w−s (yi − ds)− + w+
s (yi − ds)+}.

A non-target structure s is always prescribed a dose of zero, and since y ≥ 0, its

individual loss simplifies to fi(yi) = w+
s yi. Thus, its only contribution to the objective

is through its total dose. An example of these loss functions is given in Figure 2.2.

We can collapse the sum of non-target losses into a single linear term,

S∑
s=P+1

fs(yi) =
S∑

s=P+1

w+
s

(∑
i∈Vs

yi

)
=

S∑
s=P+1

w+
s zs = cT z,

where c = (w+
P+1, . . . , w

+
S ) and z =

(∑
i∈VP+1

yi, . . . ,
∑

i∈VS yi

)
. Our objective is then

f(y) =
P∑
s=1

∑
i∈Vs

{w−s (yi − ds)− + w+
s (yi − ds)+}+ cT z.

This formulation is closely related to quantile regression (Davino et al., 2013). In
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the latter, we minimize
∑

i φ(yi − v − di) with respect to (x, v) where

φ(u) = τ(u)+ + (1− τ)(u)− =
1

2
|u|+

(
τ − 1

2

)
u

is the tilted `1 penalty with τ ∈ (0, 1). For our inverse planning problem, the residual

ri := yi − v − di can be interpreted as the difference between calculated and desired

doses, allowing for a uniform dose offset v ∈ R within each structure. We rewrite our

individual loss as

fi(yi − v) = w−i (ri)− + w+
i (ri)+

= (w−i + w+
i )
(

w−i
w−i +w+

i

(ri)− +
w+
i

w−i +w+
i

(ri)+

)
= (w−i + w+

i )
(

1
2
|ri|+

(
w+
i

w−i +w+
i

− 1
2

)
ri

)
,

and the loss function becomes

fs(yi − v) =
∑
i∈Vs

fi(yi − v) = (w−s + w+
s )
∑
i∈Vs

(
1

2
|ri|+

(
τs −

1

2

)
ri

)
,

where τs := w+
s

w−s +w+
s
∈ (0, 1). For ri 6= 0, the first order condition with respect to v is

∂fs(yi − v)

∂v
= τs|{i : ri > 0}| − (1− τs)|{i : ri < 0}| = 0,

which implies τs|Vs| = |{i : ri < 0}|, i.e., in a given structure s, the τs-quantile of

optimal residuals is zero. Although our original loss does not include v, we can use

this as a rule of thumb for selecting relative dose penalties (w−s , w
+
s ).

2.5 Dose constraints

2.5.1 Percentile

A percentile constraint, otherwise known as a dose-volume constraint, bounds the

dose delivered to a given percentile of a patient structure. This allows us to set a

limit on the fraction of total voxels that are under- or overdosed with respect to a
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user-provided threshold. For clinicians, this provides a way to shape the dose-volume

histogram directly rather than by searching through combinations of objective weights

to achieve desired dose statistics. Given a structure s and dose vector y, let Ds(p, y)

represent the minimum dose delivered to p percent of all voxels in s, i.e., Ds(p, y) is

the greatest lower bound on the dose received by p% of the tissue.

To formalize this notion, we define an exact value count function vs : Rm
+ ×R+ →

Z+, which computes the total number of voxels i ∈ Vs that receive a dose above

b ∈ R+. Let g(u) = 1{u ≥ 0}, then

vs(y, b) =
∑
i∈Vs

1{yi ≥ b} =
∑
i∈Vs

g(yi − b)

and our p-th percentile dose is

Ds(p, y) = max{b ∈ R+ : vs(y, b) ≥ φs(p)} where φs(p) :=
p

100
|Vs|.

Observe that Ds(p, y) ≥ 0 is finite and weakly decreasing in p.

Our goal is to boundDs(p, y). For example, we may want at least 30% of the voxels

in structure s to receive a dose above 25 Gy; this is identical to Ds(30, y) ≥ 25. Let

` < u be non-negative scalar values. An lower dose-volume constraint, Ds(p, y) ≥ `,

requires the number of voxels in s that receive a dose above ` to be at least p%

of the total voxels in the structure. Similarly, an upper dose-volume constraint,

Ds(p, y) ≤ u, requires the number of voxels i ∈ Vs with a dose above u to be at most

p% of voxels in Vs, or equivalently, at least 100 − p% of the voxels to receive a dose

under u. Thus, the inequalities

Ds(p, y) ≤ u ⇔ vs(y, u) ≤ φs(p) ⇔ vs(−y,−u) ≥ φs(100− p)

are equivalent, as are

Ds(p, y) ≥ ` ⇔ vs(y, `) ≥ φs(p) ⇔ vs(−y,−`) ≤ φs(100− p).

In general, this is a hard combinatorial problem: the brute force approach for a
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single upper dose-volume constraint, for example, is to solve all
(|Vs|
φ

)
convex problems

obtained by choosing subsets of φ = dφs(p)e voxels to constrain below u, which is

prohibitively large given the size of patient geometries.

2.5.2 Mean, minimum, and maximum

In a few special cases, we can set convex constraints on the dose. Let the average,

minimum, and maximum dose delivered to all voxels in structure s be

Davg
s (y) =

1

|Vs|
∑
i∈Vs

yi, Dmin
s (y) = min

i∈Vs
{yi}, Dmax

s (y) = max
i∈Vs
{yi}.

A lower bound b ∈ R+ on the minimum dose is equivalent to requiring yi ≥ b for all

i ∈ Vs, and similarly for an upper bound on the maximum dose. Thus, we can enforce

linear constraints on these dose statistics in our problem. Our nonconvex formulation

with exact dose-volume constraints is

minimize f(y)

subject to y = Ax

x � 0

`s,k ≤ Ds(ps,k, y) ≤ us,k, k = 1, . . . , Ks, s = 1, . . . , S

`avg
s ≤ Davg

s (y) ≤ uavg
s , s = 1, . . . , S

Dmin
s (y) ≥ `min

s , s = 1, . . . , S

Dmax
s (y) ≤ umax

s , s = 1, . . . , S,

(2.1)

where (x, y) are our variables, and for each structure s, we index the parameters of

its dose-volume constraints with k = 1, . . . , Ks.

2.5.3 Convex restriction

To address the nonconvexities in problem (2.1), we introduce a convex restriction

that provides an effective heuristic for satisfying the dose-volume constraints. Our

restricted constraint overestimates the number of voxels that are underdosed with
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Figure 2.3: The indicator function g(u) (solid) and hinge loss ĝλ(u) with λ = 2
(dashed). Note that ĝλ(u) ≥ g(u) for all u ∈ R, so the hinge loss provides a convex
restriction on the dose-volume constraint.

respect to d by replacing the indicator g in v with a family of hinge loss functions

ĝλ(u) = (1 + λu)+ = max(1 + λu, 0),

parametrized by λ > 0, giving us a restricted value count for structure s of

v̂s(y, b;λ) =
∑
i∈Vs

ĝλ(yi − b) =
∑
i∈Vs

(1 + λ(yi − b))+.

If u > 0, then g(u) = 1 < 1 + λu = ĝλ(u), and if u ≤ 0, then g(u) = 0 ≤ ĝλ(u).

Hence, g(u) ≤ ĝλ(u) for all u ∈ R and λ > 0 (Figure 2.3). Evaluating at ui = yi − b
and summing over all voxels i ∈ Vs, we obtain

vs(y, b) =
∑
i∈Vs

g(yi − b) ≤
∑
i∈Vs

ĝλ(yi − b) = v̂s(y, b;λ).

An upper bound on the restricted value count at a given point thus ensures the exact

value count is bounded above as well.

We can guarantee our dose-volume constraints hold by enforcing specific limits
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on v̂. If v̂s(y, u;λ) ≤ φs(p), then vs(y, u) ≤ φs(p), and the upper dose-volume con-

straint, Ds(p, y) ≤ u, is satisfied. Similarly, v̂s(−y,−`;λ) ≤ φs(100− p) implies that

Ds(p, y) ≤ `. To simplify notation, we rewrite v̂s(y, b;λ) ≤ φ as

∑
i∈Vs

(1 + λ(yi − b))+ ≤ φ.

Since λ > 0, we can divide both sides of the inequality by λ. Letting α := 1
λ

and

gathering all terms on the left-hand side, we obtain the inequality

∑
i∈Vs

(α + (yi − b))+ − αφ ≤ 0.

The left-hand side of this inequality is a sum of convex functions of (α, y), and hence

convex. Note that while λ was a parameter of our restricted value count function,

α > 0 can be an optimization variable, since the left-hand term is jointly convex in

α and y. Additionally, we can replace the constraint α > 0 with α ≥ 0 because when

α = 0, the constraint simplifies to (yi − b)+ ≤ 0, which is equivalent to yi ≤ b for all

i ∈ Vs. Certainly in this case, the condition Ds(p, y) ≤ b holds. Thus, by defining the

functions

D̂+
s (p, y, b, α) =

∑
i∈Vs

(α + (yi − b))+ − αφs(p)

for upper constraints and

D̂−s (p, y, b, α) =
∑
i∈Vs

(α− (yi − b))+ − αφs(100− p),

for lower constraints, each convex restriction can be represented by inequalities in

terms of these functions: for α ≥ 0, D̂+
s (p, y, u, α) ≤ 0 implies Ds(p, y) ≤ u, and
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D̂−s (p, y, `, α) ≤ 0 implies Ds(p, y) ≥ `. Our convex formulation with restricted dose-

volume constraints is

minimize f(y)

subject to y = Ax

x � 0, α � 0

D̂+
s

(
ps,k, y, us,k, α

(u)
s,k

)
≤ 0, k = 1, . . . , K

(u)
s , s = 1, . . . , S

D̂−s

(
ps,k, y, `s,k, α

(`)
s,k

)
≤ 0, k = 1, . . . , K

(`)
s , s = 1, . . . , S

`avg
s ≤ Davg

s (y) ≤ uavg
s , s = 1, . . . , S

Dmin
s (y) ≥ `min

s , s = 1, . . . , S

Dmax
s (y) ≤ umax

s , s = 1, . . . , S,

(2.2)

where for every structure s, we index the parameters of its upper dose-volume con-

straints with k = 1, . . . , K
(u)
s , and its lower dose-volume constraints with k = 1, . . . , K

(`)
s .

We include a separate optimization variable, αs,k, in each dose-volume constraint to

represent the inverse slope of its convex restriction and stack these variables in a

vector α := (α(`), α(u)). Optimizing over α in addition to (x, y) ensures we obtain the

best hinge loss approximation to the value count function. The above formulation

is a restriction of our original problem: if (x, y, α) is feasible for problem (2.2), then

(x, y) is feasible for problem (2.1).

2.6 Refinements

2.6.1 Two-pass refinement

A solution (x∗, y∗, α∗) to problem (2.2) satisfies our restricted dose-volume constraints,

so it is feasible for our original problem (2.1) with exact dose-volume constraints.

However, since the convex restriction enforces an upper bound on the restricted value

count function v̂, the feasible set of problem (2.2) is a subset of the feasible set of

problem (2.1), and (x∗, y∗) may not be optimal for the latter. One way to improve our

solution is to bound only the minimum number of voxels in each structure required

to satisfy the dose-volume constraint. A good heuristic is to select those voxels i that
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receive a dose y∗i , which satisfies the associated dose-volume bound by the largest

margin, and re-solve the problem with the convex restriction replaced by bounds on

just these voxels. The solution of this second pass, (x∗∗, y∗∗), will achieve an objective

value f(y∗∗) ≤ f(y∗) while still satisfying our exact dose-volume constraints.

To make this precise, consider the lower dose-volume constraint Ds(p, y) ≥ `. This

is equivalent to yi ≥ ` for at least φs(p) voxels in structure s. Given y∗ from our first

pass optimization, we compute the margin ξ∗i = (y∗i − `) and select the qs = dφs(p)e
voxels i ∈ Vs with the largest values of ξ∗i . Call this subset Q−s ⊆ Vs. Now, we replace

Ds(p, y) ≥ ` in problem (2.1) with the precise voxel constraints yi ≥ ` for all i ∈ Q−s .

On the second pass,

vs(y, `) =
∑
i∈Vs

1{yi ≥ `} ≥
∑
i∈Q−s

1{yi ≥ `} = qs ≥ φs(p),

so our upper dose-volume constraint is satisfied. An analogous argument with qs =

dφs(100 − p)e and ξ∗i = (u − y∗i ) produces the subset Q+
s for an upper dose-volume

constraint Ds(p, y) ≤ u. Given a solution (x∗, y∗, α∗) to problem (2.2), we repeat this

process with every such constraint to obtain the second-pass problem formulation

minimize f(y)

subject to y = Ax

x � 0

yi ≤ us,k ∀i ∈ Q+
s,k, k = 1, . . . , K

(u)
s , s = 1, . . . , S

yi ≥ `s,k ∀i ∈ Q−s,k, k = 1, . . . , K
(`)
s , s = 1, . . . , S

`avg
s ≤ Davg

s (y) ≤ uavg
s , s = 1, . . . , S

Dmin
s (y) ≥ `min

s , s = 1, . . . , S

Dmax
s (y) ≤ umax

s , s = 1, . . . , S,

(2.3)

where the voxel subsets are indexed with k = 1, . . . , K
(u)
s for upper dose-volume

constraints, and k = 1 . . . , K
(`)
s for lower dose-volume constraints. We can warm

start our solver at (x∗, y∗) to speed up the second pass optimization.
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Algorithm 2.6.1 Two-pass algorithm.

given a dose matrix A ∈ Rm×n, a prescribed dose vector d ∈ Rm,

and a set of dose-volume constraints C.
1. First pass. Obtain the solution (x∗, y∗, α∗) to problem (2.2).

for each (`, p, s) ∈ C do

2a. Compute margins. Calculate ξ∗i = y∗i − ` for all i ∈ Vs.
2b. Sort margins. Sort {ξ∗i }i∈Vs in ascending order to form a set ξs.

2c. Identify voxel subset. Select the dφs(p)e largest values ξi ∈ ξs
and include their indices i in Q−s,k.

end for

for each (u, p, s) ∈ C do

3a. Compute margins. Calculate ξ∗i = u− y∗i for all i ∈ Vs.
3b. Sort margins. Sort {ξ∗i }i∈Vs in ascending order to form a set ξs.

3c. Identify voxel subset. Select the dφs(100− p)e largest values ξi ∈ ξs
and include their indices i in Q+

s,k.

end for

4. Second pass. Obtain the solution (x∗∗, y∗∗) to problem (2.3) using (x∗, y∗)

as a warm start point.

2.6.2 Dose constraints with slack

If our dose constraints are too strict, problem (2.2) may not have a solution. This

can arise even if the feasible set for our original problem (2.1) is non-empty, since our

convex restriction enforces more stringent bounds on the dose distribution. To ensure

the first pass of our algorithm always supplies a solution, we introduce a slack variable

δ ∈ R+ to the bounds of each dose constraint, mapping lower bounds ` 7→ (`− δ) and

upper bounds u 7→ (u+δ). This creates soft constraints that need not be met precisely

by the solution. Our problem reformulated with restricted dose-volume constraints
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and slack is

minimize f(y)

subject to y = Ax

x � 0, α � 0, δ � 0

D̂+
s

(
ps,k, y, us,k + δ

(u)
s,k , α

(u)
s,k

)
≤ 0, k = 1, . . . , K

(u)
s , s = 1, . . . , S

D̂−s

(
ps,k, y, `s,k − δ(`)

s,k, α
(`)
s,k

)
≤ 0, k = 1, . . . , K

(`)
s , s = 1, . . . , S

`avg
s − δ

avg,(`)
s ≤ Davg

s (y) ≤ uavg
s + δ

avg,(u)
s , s = 1, . . . , S

Dmin
s (y) ≥ `min

s − δmin
s , s = 1, . . . , S

Dmax
s (y) ≤ umax

s + δmax
s , s = 1, . . . , S,

(2.4)

Note that δ := (δ(u), δ(`)) is a variable in the optimization, and the value of each δs,k

indicates the amount (in units of delivered dose, e.g., Gy) by which each bound is

weakened in the solution.

We can incorporate soft constraints into the two-pass algorithm as well. On the

first pass, we solve problem (2.4) to obtain the optimal variables (x∗, y∗, α∗) and

the optimal slacks δ∗. Our margin for selecting Qs is now computed with respect

to the slack bound, i.e., ξ∗i = (y∗i − ` + δ∗) for lower-volume dose constraints, and

ξ∗i = (u+ δ∗− y∗i ) for upper dose-volume constraints. Finally, we weaken the bounds

in problem (2.3) by δ∗, giving us the reformulated second pass optimization with slack

dose-volume constraints

minimize f(y)

subject to y = Ax

x � 0

yi ≤ us,k + δ
(u)∗
s,k ∀i ∈ Q

+
s,k, k = 1, . . . , K

(u)
s , s = 1, . . . , S

yi ≥ `s,k − δ(`)∗
s,k ∀i ∈ Q

−
s,k, k = 1, . . . , K

(`)
s , s = 1, . . . , S

`avg
s − δ

avg,(`)∗
s ≤ Davg

s (y) ≤ uavg
s + δ

avg,(u)∗
s , s = 1, . . . , S

Dmin
s (y) ≥ `min

s − δmin ∗
s , s = 1, . . . , S

Dmax
s (y) ≤ umax

s + δmax ∗
s , s = 1, . . . , S.

(2.5)
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Algorithm 2.6.2 Two-pass algorithm with slack.

given a dose matrix A ∈ Rm×n, a prescribed dose vector d ∈ Rm,

and a set of dose-volume constraints C.
1. First pass. Obtain the solution (x∗, y∗, α∗, δ∗) to problem (2.4).

for each (δ∗, `, p, s) ∈ C do

2a. Compute margins. Calculate ξ∗i = y∗i − `+ δ∗ for all i ∈ Vs.
2b. Sort margins. Sort {ξ∗i }i∈Vs in ascending order to form a set ξs.

2c. Identify voxel subset. Select the dφs(p)e largest values ξi ∈ ξs
and include their indices i in Q−s,k.

end for

for each (δ∗, u, p, s) ∈ C do

3a. Compute margins. Calculate ξ∗i = u+ δ∗ − y∗i for all i ∈ Vs.
3b. Sort margins. Sort {ξ∗i }i∈Vs in ascending order to form a set ξs.

3c. Identify voxel subset. Select the dφs(100− p)e largest values ξi ∈ ξs
and include their indices i in Q+

s,k.

end for

4. Second pass. Obtain the solution (x∗∗, y∗∗) to problem (2.5) using (x∗, y∗)

as a warm start point.

2.7 Implementation

We implement our radiation treatment planning methodology with ConRad, a Python-

embedded open-source software package based on the convex programming library,

CVXPY (Diamond and Boyd, 2016), using the convex solvers SCS (O’Donoghue

et al., 2016) and ECOS (Domahidi et al., 2013). ConRad provides a simple, intuitive

interface for ingesting patient data, constructing plans based on a clinical prescrip-

tion, and visualizing the dose-volume histograms of the result. It allows the user to

add dose constraints using syntax familiar to clinicians. Since ConRad is an ordinary

Python library, it can be easily integrated into existing data processing pipelines.
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The following code imports a prescription, solves for the optimal treatment plan

without dose constraints, and plots the DVH curves for all the patient structures. The

m×n dose-influence matrix A can be encoded as a NumPy ndarray or any of several

sparse representations in Python. The m-length vector voxel labels enumerates the

index of the assigned structure for each voxel in the patient volume.

import conrad

# Construct the case with no dose constraints.

> case = conrad.Case()

> case.prescription = "/Documents/prescriptions/rx_patient_01.yaml"

> case.physics.dose_matrix = A

> case.physics.voxel_labels = voxel_labels

> graphics = conrad.CasePlotter(case)

# Solve with a single pass and no slack.

> status, run = case.plan(solver = "ECOS", use_slack = False,

use_2pass = False)

> print("Problem feasible?:\n{}".format(status))

> print("Dose summary:\n{}".format(case.dose_summary_string))

# Display color-coded plot of all DVH curves.

> graphics.plot(run, show = True)

A Case object comprises Anatomy, Physics, Prescription and PlanningProblem

objects. Prior to planning, the case’s Anatomy and Physics objects must be built.

The user can either build the case’s Anatomy by adding structures programmatically

(with data on each structure’s name, index, identity as target/non-target, and desired

dose) or by ingesting a prescription, which can be supplied as a Python dictionary or

as a YAML or JSON file formatted for ConRad’s parser. The minimum information

required for the case’s Physics object are the m × n dose matrix and a m-length

vector of voxel labels. The case’s Prescription object can be used to populate the
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Anatomy object or to keep track of clinical guidelines and objectives. It can also be

left empty.

The case’s PlanningProblem object builds and solves optimization problems based

on the structures in the case anatomy and any constraints assigned to those structures.

The PlanningProblem is not exposed to the user. Instead, users form a treatment

plan by calling the case’s plan() method, which returns a bool status indicating

whether the specified problem was feasible, along with a RunRecord object that carries

solver performance data, optimal variables, and DVH curves.

Before planning a case, the user can add, remove, or modify dose constraints

to any structure. Thus, even when a case has an assigned prescription, the dose

constraints attached to each structure in the case anatomy may differ from the con-

straints specified in the prescription. For example, the prescribed constraints may

correspond to clinical guidelines, while the constraints used during planning may be

chosen arbitrarily by the user to obtain plans with desirable dose properties.

After planning a case, users can plot the DVH curves, retrieve and print summaries

of dose statistics for each structure, and when applicable, display a report of whether

the current plan satisfies each constraint listed in the prescription. A case can be

re-planned with different objective weights or dose constraints on any structure. The

ConRad library provides a PlanningHistory object to retain and manage results

from prior runs.

The following code adds a dose-volume constraint to the PTV from our previous

case, allowing at most 20% of the PTV’s voxels to receive more than 70 Gy. Algorithm

2.6.1 is then applied to obtain an optimal beam output.

# Constrain at most 20% of PTV voxels to receive dose above 70 Gy.

> case.anatomy["PTV"].constraints += D(20) <= 70 * Gy

# Solve with two-pass algorithm and no slack.

> _, run = case.plan(solver = "ECOS", use_slack = False,

use_2pass = True)

> print("x PASS 1: {}".format(run.x_pass1))

> print("x PASS 2: {}".format(run.x_pass2))
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# Plot DVH curves from first (dashed) and second pass (solid).

> graphics.plot(run, show = False, ls = "--")

> graphics.plot(run, second_pass = True, show = True, clear = False,

legend = True)

2.8 Examples

2.8.1 Basic functionality

We present results illustrating the methods described in this chapter: approximating

dose-volume constraints via convex restrictions, two-pass refinement of plans with

dose-volume constraints, and handling incompatible constraints with slack variables.

Problem instances. We demonstrate the basic functionality on a head-and-neck

case expressed as a VMAT aperture re-weighting problem. The case contains 360

apertures in four arcs, 270,000 voxels distributed across 17 planning structures, in-

cluding the PTV treated to 66 Gy, two auxiliary targets treated to 60 Gy, several

OARs, and generic body voxels.

To test the handling of dose-volume constraints, we plan the case with no dose

constraints and then re-plan with a single dose-volume constraint applied to the

PTV, namely D(20) ≤ 70 Gy. We run the two-pass algorithm and compare the

plans obtained by applying restricted and exact versions of the aforementioned dose-

volume constraint. Finally, we test the slack method by planning the case with two

incompatible dose-volume constraints: D(98) ≥ 66 Gy on the PTV and D(20) ≤ 20

Gy on the spinal cord. We compare the results from enforcing the PTV constraint

alone, both constraints without slack, and both constraints with slack allowed.

Computational details. The size of the dose matrix passed from ConRad to the

convex solvers in the backend varied depending on the dose constraints. When no

minimum, maximum, or dose-volume constraints were applied to a non-target struc-

ture, the submatrix for that structure was replaced with a mean dose representation,
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thereby eliminating |Vs| − 1 rows from the problem matrix. In particular, the matrix

representing the full dose on the targets and mean dose for non-targets had dimen-

sions 11,141 × 360, and the matrix including the full dose on the spinal cord was

15,000 × 360. The ConRad problem request was formulated as a convex program

in CVXPY and passed to a GPU-based implementation of the convex solver SCS.

Calculations were performed on a cluster with 32-core, 2.20 GHz Intel Xeon E5-4620

CPU and a nVidia TitanX graphics card.

Clinical results: dose-volume constraints. Figure 2.4a depicts the DVH curves

of the plan produced without any dose constraints. The PTV curve is shown in red

with a dotted vertical line marking its prescribed dose of 66 Gy. The rest are DVHs

for the OARs and generic body voxels. This solution to the unconstrained problem

already gives a fairly good treatment plan. The DVH of the right cochlea and left

parotid are pushed far left, so only 15–20% of their volume exceed 10 Gy, and almost

no voxels are dosed above 30 Gy. The spinal cord receives somewhat more radiation,

while the worst case is the brain with a slow, nearly linear drop-off to about 75 Gy.

The PTV curve begins to fall at 66 Gy, but does not reach zero until nearly 95 Gy.

To reduce this overdosing, we add a dose-volume constraint that limits no more than

20% of the PTV to receive over 70 Gy, as indicated by the red, left-pointing arrow

in Figure 2.4b, and re-plan the case. The resulting DVH curves are depicted as solid

lines in Figure 2.4c, while the dashed curves represent the original plan. Under the

new plan, the PTV curve has been pushed left at the arrow, and its drop-off around

66 Gy is steeper, meaning all voxel doses are closer to the prescription. Moreover,

our OARs are minimally affected. We have reduced overdosing to the PTV without

significantly increasing radiation to other organs.

Clinical results: two-pass algorithm. A close inspection of Figure 2.4c reveals

a gap between the PTV curve and the DVH constraint arrow. This is due to the

conservative nature of the convex restriction, which overestimates the number of

voxel violations. We can eliminate this gap and improve our overall objective with

the two-pass algorithm. Figure 2.5a shows the plan from the first pass. There is a
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Figure 2.4: DVH curves for PTV and several OARs from the 4-arc VMAT head-and-
neck case. (a) Plan without any dose constraints. (b) Add a dose-volume constraint
D(20) ≤ 70 Gy. (c) Re-plan with the new constraint. The unconstrained plan is
shown in dashed lines.
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(a) First Pass
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Figure 2.5: DVH curves for a two-pass algorithm with a single dose-volume constraint
on the PTV. (a) On the first pass, the constraint is met with a margin of about 0.5
Gy. (b) On the second pass, the constraint is met tightly with small gains elsewhere.

margin of about 0.5 Gy between the PTV curve and arrow, meaning at most 20%

of the PTV receives over 69.5 Gy, a more restrictive solution than required by our

constraint D(20) ≤ 70 Gy.

This margin disappears in Figure 2.5b. Here, the dashed lines depict the first

pass solution, and the solid lines come from the second pass. The second pass PTV

curve falls precisely on the center of the left-facing arrow, meaning the dose-volume

constraint is tight. In addition, the DVH curves for the right cochlea and left parotid

have shifted leftward, indicating they now receive less radiation. By replacing our

convex restriction with exact voxel constraints, we are able to make gains in our

OAR clinical objectives while still fulfilling the DVH constraint.

Clinical results: constraints with slack. So far, we have specified only one dose

constraint. A problem may become infeasible when multiple constraints are enforced,

either because the user-supplied bounds are too extreme or the convex restriction too

severe in its overestimation of the voxel count. In such cases, we can still produce

a plan that approximately conforms to the desired specifications by enabling slack

constraints.
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Figure 2.6a depicts a plan created without slack. The single PTV constraint,

D(98) ≥ 66 Gy, is met with margin. However, when we add the OAR constraint

D(20) ≤ 20 Gy, as symbolized by the blue arrow in Figure 2.6b, and re-plan the

case, the optimizer tells us that the problem is infeasible. It is impossible to meet

both (convex restricted) dose-volume constraints exactly. We thus re-plan allowing

for slack bounds on these constraints. The resulting DVH curves are plotted in Figure

2.6c with dotted lines representing the original plan and solid lines for the new plan.

The PTV constraint has been relaxed by about 3 Gy, as symbolized by the red arrow

shifting left behind the solid red curve to (98, 63). This small concession allows us to

satisfy the OAR constraint by a wide margin.

2.8.2 Problem scaling

Problem instances. We assess the performance of our algorithm on a larger prostate

FMO problem. This case contains 74,453 voxels × 34,848 beamlets, encompassing a

single PTV treated to 75.6 Gy, five OARs with various dose constraints, and generic

body voxels. Approximately 226 million (roughly 10.6%) of the entries in the dose

matrix are non-zero. In our experiments, we used only a subset of 10,000 beamlets

from this matrix.

We plan the case with the prescription detailed in Table 2.1, which is adapted from

the QUANTEC guidelines in Marks et al. (2010). The computational details are the

same as in the head-and-neck case. As before, we analyze the results from a single

pass and two-pass algorithm with and without slack allowed. We then re-plan the

case with only the PTV dose constraint and compare its runtime and OAR overdose

to the plans produced from the full prescription.

Timing results. Our algorithm produces a plan that satisfies all dose constraints

using a single pass with slack enabled. The optimization finishes in 426.9 seconds,

about 2.5x the runtime of the head-and-neck case. A second pass takes approximately

the same amount of time and does not result in significantly larger constraint margins.

The presence or absence of slack also has little impact on the runtime, which varies

by at most 7 seconds.
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Figure 2.6: DVH curves for the PTV and spinal cord. (a) Plan without slack, con-
straining D(98) ≥ 66 Gy in the PTV. (b) A constraint D(20) ≤ 20 Gy is added to the
spinal cord, rendering the problem infeasible. (c) Re-plan with slack allowed. The
spinal cord constraint is met, but the PTV constraint relaxes by about 3 Gy.
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Table 2.1: Prostate FMO Prescription

Structure Target? Dose (Gy) Constraints (Gy)

Prostate Yes 75.6 Davg ≥ 75.6
Urethra No 0 Davg < 52.5
Bladder No 0 D(85) < 80

D(75) < 75
D(65) < 70
D(50) < 65

Rectum No 0 D(90) < 75
D(85) < 70
D(50) < 65

L. Femoral Head No 0 D(95) < 50
R. Femoral Head No 0 D(95) < 50
Body No 0 Davg < 52.5

If we drop all except the mean dose constraints, the problem collapses into a linear

program, greatly decreasing the runtime. The size of this reduction depends on the

characteristics of the affected structures and the dose influence matrix. For example,

in the head-and-neck case, the runtime falls by 87% to a mere 24 seconds. Conversely,

when adding dose-volume constraints, the initial constraint on a structure will have

a greater impact on runtime than subsequent additions.

2.9 Conclusion

We have developed a convex formulation for the FMO problem that incorporates

dose-volume constraints. Our model replaces each exact dose-volume constraint with

a convex restriction, which overestimates the number of voxels that violate the clin-

ician’s desired threshold. This allows us to solve the problem quickly and efficiently

using standard convex optimization algorithms. We also introduce two refinements:

a two-pass algorithm and a model with slack. In the former, we improve our initial

solution by re-optimizing with the restrictions replaced by bounds on a subset of

voxels, enabling us to achieve a better objective that still satisfies the dose-volume

constraints. The latter allows for soft bounds and is useful if the restricted constraints
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render the problem infeasible. We demonstrate the efficacy of our method on a VMAT

head-and-neck case and a prostate case. Our algorithm consistently produces good

treatment plans that fulfill all dose constraints when feasible. In problems with infea-

sible constraints, we are able to generate plans that minimize the dose violation while

taking into account clinical goals, allowing clinicians to easily visualize trade-offs and

select the plan that is best for the patient.

A variety of extensions to our two-pass algorithm are possible. For instance, we

could rewrite the original problem as a mixed-integer linear program and use the

solution of the convex restriction to warm start a branch-and-bound solver. More

broadly, we could apply this starting point to accelerate any number of iterative

approaches in the literature. Dose-volume constraints are often assigned different

priorities in practice, and our algorithm may be easily adapted to accommodate

such user-defined preferences, either through new penalties, changes in the slack, or

additional passes that impose the constraints in a lexicographic order. These hybrid

methods, which combine convex approximations with nonconvex solution methods,

offer an important avenue for future research.



Chapter 3

Adaptive Radiation Treatment

Planning

3.1 Introduction

In this chapter, we describe a method for radiation treatment planning that adapts

dynamically to changes in the patient’s health. Typically, radiation therapy takes

place over multiple treatment sessions. A clinician will divide up the total prescribed

dose into smaller dose fractions, which are then delivered over the course of several

weeks or months. This permits normal tissue time to recover and repair sublethal

cell damage, but also gives tumors an opportunity to proliferate, especially when

the treatment course is long. A study of 4338 prostate cancer patients showed that

biochemical failure increases by 6% for every 1 week increase in treatment time, with

a dose equivalent of proliferation of 0.24 Gy/day (Thames et al., 2010). Thus, an

important question in radiation treatment planning is how to choose the sequence of

deliverable doses such that they balance these temporal effects on a patient’s health.

We formulate the adaptive treatment planning problem as an optimal control

problem with nonlinear patient health dynamics, which we derive from the linear-

quadratic (LQ) model of post-irradiation cell survival (Fowler, 1989). As this formu-

lation is nonconvex, we propose a method for obtaining an approximate solution by

solving a sequence of convex optimization problems. Our method is fast, efficient, and

32
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robust to model error, adapting readily to changes in the patient’s health between

sessions. Moreover, we show that it can be combined with the operator splitting

method ADMM to produce an algorithm that is highly scalable and can handle large

clinical cases, which involve tens of thousands of radiation beams. We introduce an

open-source Python software package, AdaRad, that implements this method and

demonstrate its performance on several examples.

Early clinical practitioners split the prescribed dose equally over a fixed number

of sessions. While convenient, this method does not account for errors or uncertainty

in the treatment process. For example, due to patient movement during radiation

delivery, the expected dose may differ from the actual dose to an anatomical structure.

If the actual dose is observable, a common way to compensate for this is to divide the

residual dose (i.e., the difference between the prescribed and cumulative actual dose)

across the remaining sessions. This then becomes the new per-session dose goal. de la

Zerda et al. (2007) solve for the beam intensities by minimizing the sum-of-squared

difference between this goal dose and the expected dose. They compare the results

when errors are perfectly known, so the expected dose is equal to the actual dose,

with the results when errors are assumed to be zero. Ferris and Voelker (2004) take

a similar approach, except the errors are modeled explicitly as a random shift in the

surrounding voxels. Instead of the dose to each voxel, Sir et al. (2012) work with the

equivalent uniform dose (EUD), a value that captures the biological effect of a dose

distribution over a region. Their objective is to minimize the sum of the EUD over all

treatment criteria subject to bounds on the EUD of the tumor and normal tissues. To

solve this problem, they employ methods from approximate dynamic programming

coupled with a discrete probabilistic model of the dose error.

The papers we have discussed so far only focus on the dose to the patient. Kim

et al. (2009) introduce a Markov decision process model that includes both the dose

(action) and the patient’s health state. Each choice of dose induces a transition to a

particular health state with some probability. Making this idea concrete, Mizuta et al.

(2012) define the health of a tumor (resp. OAR) to be the radiation (resp. damage)

effect of the delivered dose, as calculated from the linear-quadratic (LQ) model of

cell survival (Fowler, 1989). They analyze a simple example with one tumor and one
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OAR and find that the optimal fractionation scheme is either a single session delivery

of the full dose or equal dose fractions, depending on the relationship between the

LQ parameters. Bortfeld et al. (2015) extend this analysis to incorporate accelerated

tumor repopulation and show that the dose per session increases over the treatment

course. Using simulated annealing, Yang and Xing (2005) solve a similar treatment

planning problem based on the LQR model, which captures all 4 Rs (repair of sub-

lethal damage, repopulation, redistribution, and reoxygenation) of cellular radiation

response (Brenner et al., 1995).

These analyses provide insight into the tradeoffs between hypo- and hyper-fractionation

in a simple setting. However, most clinical cases are more complex, involving mul-

tiple tumors, OARs, and nonlinear constraints. For instance, dose-volume (i.e., per-

centile) constraints are widely used to limit the radiation exposure of a percentage

of an anatomical structure, such as the spine. These constraints are nonconvex, but

can be approximated by a convex restriction (Halabi et al., 2006b; Zarepisheh et al.,

2013; Fu et al., 2019). In Saberian et al. (2016), the authors consider a dynamic

setting with multiple OARs and dose-volume constraints. Starting from a given set

of beam intensities, they solve for the optimal number of sessions and OAR sparing

factors. They also derive sufficient conditions under which the optimal treatment

consists of equal dose fractions. In a follow-up paper (Saberian et al., 2017), the au-

thors integrate the spatial and temporal aspects of the problem, treating both beam

intensities and number of sessions as variables. Restricting their attention to equal

fractions, they propose a two-stage solution algorithm: in the first stage, they solve

for the optimal beams given each potential fixed number of sessions, and in the sec-

ond stage, they select the number of sessions based on the optimal objectives from

the first stage. They show that their method achieves better tumor ablation than

conventional IMRT or the spatiotemporally separated method.

Perhaps the paper most similar to our work in this chapter is Kim et al. (2012).

In it, the authors propose a stochastic control formulation of the adaptive treatment

planning problem with multiple tumors and OARs. They estimate the radiation

response of the tumors with a log-linear cell kill model and the response of the OARs

with the standard LQ model. Their goal is to minimize the expected number of
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tumor cells at the end of treatment subject to bounds on the radiobiological impact

on the OARs. Uncertainty arises in the cell model parameters, which may fluctuate

randomly between sessions, representing unpredictable changes in the patient’s health

status. The authors fix the number of sessions and focus on optimizing with respect to

the beam intensities. They show that their problem is convex, so can be solved using

a combination of standard stochastic control methods and off-the-shelf convex solvers,

and provide several examples demonstrating the effectiveness of their approach.

3.2 Problem formulation

In radiation treatment, beams of ionizing radiation are delivered to a patient from

an external source. The goal is to damage or kill diseased tissue, while minimizing

harm to surrounding healthy organs. A course of treatment is generally divided into

T sessions. At the start of session t, the clinician chooses the intensity levels of the n

beams, denoted by bt ∈ Rn
+. Typically, T ≈ 20 and n is on the order of 103 to 104. We

are interested in determining the best sequence of beam intensities b = (b1, . . . , bT ),

otherwise known as a treatment plan, subject to upper bounds Bt ∈ R̄
n
+ on bt for

t = 1, . . . , T .

Anatomy and doses. The beams irradiate an area containing K anatomical struc-

tures, labeled i ∈ {1, . . . , K}, where usually K < 10. A subset T ⊂ {1, . . . , K} are

targets/tumors and the rest are OARs. The dose delivered to each structure is linear

in the beam intensities. We write the dose vector dt = Atbt with At ∈ RK×n
+ a known

matrix that characterizes the physical effects and define d = (d1, . . . , dT ). Notice that

since bt and At are nonnegative, dt ≥ 0.

In every session, we impose a penalty on dt via a dose penalty function φt : RK →
R ∪ {∞}. A common choice is

φt(dt) = θTt dt + ξTt d
2
t ,

where θt ∈ RK and ξt ∈ RK
+ are constants. Here d2

t denotes the elementwise square
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of the dose vector. The total dose penalty over all sessions is

φ(d) =
T∑
t=1

φt(dt).

Additionally, we enforce upper bound constraints dt ≤ Dt, where Dt ∈ R̄
K
+ is the

maximum dose in session t.

Health dynamics. To assess treatment progress, we examine the health status of

each anatomical structure and encode these statuses in a vector ht ∈ RK . For now,

the details of this encoding do not matter. Typically, hti represents an estimate of

the total surviving cells in structure i. Hence if i ∈ T , a smaller hti is desirable (since

the tumor is shrinking), while if i /∈ T , a larger hti is desirable.

From an initial h0, the health status evolves in response to the radiation dose and

various other biophysical factors that depend on the patient’s anatomy, generating a

health trajectory h = (h1, . . . , hT ). Here we represent its dynamics as

ht = ft(ht−1, dt), t = 1, . . . , T, (3.1)

where ft : RK ×RK → RK is a known mapping function. In this chapter, we focus

on the linear-quadratic (LQ) model in which

fti(ht−1, dt) = h(t−1)i − αtidti − βtid2
ti + γti, i = 1, . . . , K, t = 1, . . . , T (3.2)

with constants αt ∈ RK , βt ∈ RK
+ , and γt ∈ RK . This model is commonly used to

approximate cellular response to radiation (Fowler, 1989; Thames and Hendry, 1987;

Brenner, 2008). Specifically, in the LQ + time framework (Travis and Tucker, 1987),

hti is the log of the fraction of surviving cells in structure i after a dose dti, while αti/βti

and γti are constants related to the structure’s survival curve and repair/repopulation

rate, respectively. Notice that equation (3.2) implies that the health status of each

structure evolves independently of the others.
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Health penalty and constraints. In order to control the patient’s health, we

introduce a health penalty function ψt : RK → R ∪ {∞} that imposes a penalty on

ht. Moreover, we assume that

ψt(ht) = ψt(ht1, . . . , htK) is monotonically

increasing in hti i ∈ T

decreasing in hti i /∈ T
(3.3)

for t = 1, . . . , T . This means that for a target, the health penalty increases as the

health status increases, while for an organ-at-risk, the health penalty decreases as

the health status increases. The assumption is reasonable if, for instance, ht is a

measure of cell survival in session t, so a lower (higher) status is desirable for a target

(organ-at-risk). An example of a penalty function that satisfies (3.3) is

ψt(ht) = wT (ht − hgoal
t )+ + wT (ht − hgoal

t )−,

where hgoal
t ∈ RK is the desired health status and w ∈ RK

+ and w̄ ∈ RK
+ are parameters

with wi = 0 for i ∈ T and wi = 0 for i /∈ T . Here (x)+ = max(x, 0) applied

elementwise to x. The total health penalty is

ψ(h) =
T∑
t=1

ψt(ht).

In addition, we enforce bounds Ht ∈ R̄
K

on the health status such that hti ≤ Hti for

i ∈ T and hti ≥ Hti for i /∈ T .

Optimal control problem. Given an initial health status h0, we wish to select

a treatment plan that minimizes the total penalty across all sessions. Thus, our

problem is

minimize
∑T

t=1 φt(dt) +
∑T

t=1 ψt(ht)

subject to ht = ft(ht−1, dt), t = 1, . . . , T,

hti ≤ Hti, i ∈ T , hti ≥ Hti, i /∈ T , t = 1, . . . , T,

dt = Atbt, 0 ≤ dt ≤ Dt, 0 ≤ bt ≤ Bt, t = 1, . . . , T

(3.4)
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with variables (b1, . . . , bT ), (d1, . . . , dT ), and (h1, . . . , hT ). This is a discrete-time op-

timal control problem. If φt and ψt are convex and ft is affine, e.g., ft is given by

(3.2) with quadratic dose effect βt = 0, it is also convex and can be solved directly

using standard convex solvers.

3.3 Lossless relaxation

For the remainder of this chapter, we restrict our attention to a convex objective

function and linear-quadratic health dynamics (3.2). In this case, condition (3.3)

allows us to relax the health dynamics constraint so problem (3.4) can be written

equivalently as

minimize
∑T

t=1 φt(dt) +
∑T

t=1 ψt(ht)

subject to hti ≥ fti(ht−1, dt), i ∈ T , t = 1, . . . , T,

hti ≤ fti(ht−1, dt), i /∈ T , t = 1, . . . , T,

hti ≤ Hti, i ∈ T , hti ≥ Hti, i /∈ T , t = 1, . . . , T,

dt = Atbt, 0 ≤ dt ≤ Dt, 0 ≤ bt ≤ Bt, t = 1, . . . , T.

(3.5)

The equality constraint ht = ft(ht−1, dt) has been replaced with two inequality con-

straints: a lower bound for targets and an upper bound for OARs. Notice that the

first inequality is the only nonconvex constraint in (3.5). Our relaxed problem has

the same solution set as (3.4) because these two inequalities are tight at the optimum.

Proposition 1. Let (b?, d?, h?) be a solution to problem (3.5). If conditions (3.2)

and (3.3) hold,

h?t = ft(h
?
t−1, d

?
t ), t = 1, . . . , T.

Proof. Suppose there exist some t ∈ {1, . . . , T} and i ∈ T such that h?ti > fti(h
?
t−1, d

?
t ).

Then, we can choose an ε > 0 such that h?ti > h?ti−ε > fti(h
?
t−1, d

?
t ). Since fsi(hs−1, ds)

is nondecreasing in h(s−1)i for all s ∈ {1, . . . , T}, the point (b?, d?, ĥ) with

ĥsj =

h?sj − ε s = t, j = i

h?sj otherwise
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is feasible for problem (3.5) because

ĥti > fti(h
?
t−1, d

?
t ) ≥ fti(ĥt−1, d

?
t ), h?(t+1)i ≥ f(t+1)i(h

?
t , d

?
t ) ≥ f(t+1)i(ĥt, d

?
t ),

and ĥti < h?ti ≤ Hti. Moreover, by condition (3.3), ψt(ĥt) < ψt(h
?
t ) so (b?, d?, ĥ)

achieves a lower objective value than (b?, d?, h?), contradicting our original assump-

tion. An analogous argument holds for t ∈ {1, . . . , T} and i /∈ T such that h?ti <

fti(h
?
t−1, d

?
t ) with ĥti = h?ti + ε.

3.4 Sequential convex optimization

3.4.1 Algorithm description

Problem (3.5) is in general nonconvex because the target’s health dynamics constraint

hti ≥ fti(ht−1, dt), i ∈ T , t = 1, . . . , T (3.6)

is nonconvex when any βt 6= 0. However, we can derive an estimate of its optimum

by solving a sequence of convex approximations. Each approximation is formed by

linearizing the health dynamics function (3.2) around a fixed dose point and replacing

the right-hand side of (3.6) with this linearization minus a slack variable. The slack

allows for a degree of error in the approximation and is penalized in the objective.

More precisely, let dst ∈ RK for t = 1, . . . , T . Define the linearized dynamics

function

f̂ti(ht−1, dt; d
s
t) = h(t−1)i − αtidti − βtidsti(2dti − dsti) + γti, i = 1, . . . , K. (3.7)

This function is an upper bound on the LQ function (3.2) because βt ≥ 0. We replace

the nonconvex constraint (3.6) in problem (3.5) with the affine constraint

hti = f̂ti(ht−1, dt; d
s
t)− δti, i ∈ T , t = 1, . . . , T, (3.8)

where δt ∈ RK
+ is a slack variable. (The inequality can been tightened into an equality
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due to Proposition 1). Convex approximation s is then

minimize
∑T

t=1 φt(dt) +
∑T

t=1 ψt(ht) + λ
∑T

t=1 1T δt

subject to hti = f̂ti(ht−1, dt; d
s
t)− δti, i ∈ T , δt ≥ 0 t = 1, . . . , T,

hti ≤ fti(ht−1, dt), i /∈ T , t = 1, . . . , T,

hti ≤ Hti, i ∈ T , hti ≥ Hti, i /∈ T , t = 1, . . . , T,

dt = Atbt, 0 ≤ dt ≤ Dt, 0 ≤ bt ≤ Bt, t = 1, . . . , T

(3.9)

with variables (b1, . . . , bT ), (d1, . . . , dT ), (h1, . . . , hT ), and (δ1, . . . , δT ) and slack penalty

parameter λ > 0. This problem is convex and can be solved using standard con-

vex solvers. Given a solution to (3.9), we set the next linearization point ds+1 =

(ds+1
1 , . . . , ds+1

T ) equal to the optimal dose.

Algorithm 3.4.1 Sequential convex optimization.

input: initial point d0, parameter λ > 0.

for s = 0, 1, . . . do

1. Linearize. For t = 1, . . . , T , form the linearization (3.7) around dst .

2. Solve. Set ds+1 equal to an optimal dose of problem (3.9).

until stopping criterion (3.10) is satisfied.

Algorithm 3.4.1 is a special case of the convex-concave procedure (CCP) (Yuille

and Rangarajan, 2003; Lipp and Boyd, 2016; Shen et al., 2016), which is itself a form

of majorization-minimization (Hunter and Lange, 2004; Sun et al., 2017). CCP is

a heuristic for finding a local optimum of a nonconvex optimization problem. It is

guaranteed to converge; indeed, when certain differentiability conditions are met, it

converges to a stationary point (Sriperumbudur and Lanckriet, 2009). As a descent

algorithm, CCP is usually terminated when the change in the objective falls below

some user-specified threshold ε > 0, i.e.,

psopt − ps+1
opt < ε, (3.10)
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Figure 3.1: Anatomical structures for Example 3.4.2. Red is the target (i = 1), while
green (i = 2), blue (i = 3), and orange (i = 4) are specific OARs. White denotes the
non-target body voxels (i = 5).

where psopt is the optimal objective of problem (3.9). In our simple experiments, we

have found that an initial linearization point of d0 = 0 and threshold of ε = 10−3

produce good results.

3.4.2 Illustrative example

Problem instance. We consider an example with n = 1000 beams divided into 50

bundles of 20 parallel beams each, positioned evenly around a half-circle. There are

K = 5 structures, a single target T = {1} and four OARs (including generic body

voxels) depicted in Figure 3.1. Treatment takes place over T = 20 sessions, so the

basic problem has nT + 2KT = 20200 variables.

The patient’s initial health status is h0 = (1, 0, 0, 0, 0). His status evolves according
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to equation (3.2) with

αt = (0.01, 0.50, 0.25, 0.15, 0.005),

βt = (0.001, 0.05, 0.025, 0.015, 0.0005),

γt = (0.05, 0, 0, 0, 0)

over all sessions t = 1, . . . , T .

We set the health penalty function to

ψt(ht) = (ht1)+ +
5∑
i=2

(hti)−, t = 1, . . . , T.

This function penalizes positive statuses of the target and negative statuses of the

OARs. Moreover, we constrain the target’s health status to be ht1 ≤ 2.0 for t =

1, . . . , 15 and ht1 ≤ 0.05 for the remaining sessions, and we enforce a bound on

the other structures’ health statuses of (ht2, ht3, ht4, ht5) ≥ (−1.0,−2.0,−2.0,−3.0).

Thus,

Ht =

(2.0,−1.0,−2.0,−2.0,−3.0) t = 1, . . . , 15

(0.05,−1.0,−2.0,−2.0,−3.0) t = 16, . . . , T.

For the dose penalty function, we choose

φt(dt) =
4∑
i=1

d2
ti + 0.25d2

t5, t = 1, . . . , T.

In addition, we restrict the dose and beam intensity to be no more than Dt = 20 and

Bt = 1.0, respectively, over all sessions t.

Computational details. We implemented Algorithm 3.4.1 in Python using CVXPY

(Diamond and Boyd, 2016) and solved problem (3.9) with MOSEK (Andersen and

Andersen, 2000). From an initial d0 = 0 and λ = 104, the algorithm converged in 11

iterations to a threshold of ε = 10−3. Total runtime was approximately 17 seconds

on a 64-bit Ubuntu OS desktop with 8 4-core Intel i7-4790k / 4.00 GHz CPUs and
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Figure 3.2: Optimal beam intensities for Example 3.4.2.

16 GB of RAM.

Results and analysis. The optimal treatment plan is depicted in Figure 3.2.

Beams are densely clustered diagonal from the vertical, striking the target while

largely sparing the OARs. As the sessions continue, the number of beams slowly

increases, damaging some of the less sensitive organs (i = 3 and 4). Then at t = 16,

when the target’s health bound becomes more stringent, the beam density drops pre-

cipitously so that only a narrow bundle remains focused on the target, keeping its

health status at the desired level.

Figure 3.3 shows the radiation dose and health status resulting from this plan. The

latter was computed by plugging the optimal dose into equation (3.2). Total dose to

the target (i = 1) and body voxels (i = 5) far exceed the dose to any other structures.

By the end of treatment, the target’s health status has fallen to a steady 0.05, while

the health statuses of the OARs remain within their respective lower limits.
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(a) Dose Trajectories

(b) Health Trajectories

Figure 3.3: Optimal (a) radiation dose and (b) health status trajectories for Example
3.4.2.



CHAPTER 3. ADAPTIVE TREATMENT PLANNING 45

3.5 Model predictive control

3.5.1 Algorithm description

So far, we have assumed that at the time of planning, ft perfectly captures the health

dynamics from t = 1, . . . , T . This is rarely true in practice. A patient’s anatomy

changes unpredictably between sessions, affecting the dispersion of radiation beams

and the course of their health status. We can incorporate these changes into problem

(3.4) using model predictive control (MPC).

MPC is a powerful technique for automatic control of complex, nonlinear, stochas-

tic systems. It performs extremely well even when the dynamics are approximated

by a simple model, since the system’s state is updated regularly and new information

is incorporated into the solution. This is particularly fitting for radiation treatment

planning.

As is customary in MPC, we first convert the state variable constraints in the

original problem into soft constraints, i.e., we remove the inequality constraints on h

in (3.4) and add a penalty for violating them to the objective. Let cτ : RK → R be

the corresponding health violation penalty function, defined as

cτ (hτ ) =
∑
i∈T

(hτi −Hτi)+ +
∑
i/∈T

(Hτi − hτi)+, τ = 1, . . . , T.

This penalty function allows us to accommodate new and unexpected changes in

the patient’s health, such as the metastasis of a tumor that renders it impossible to

control without exceeding the health damage limit of an OAR.

We are now ready to describe MPC for our model. At the beginning of each

session t, we observe At, ft, and the patient’s true health status, ht−1, then form the

problem

minimize
∑T

τ=t φτ (dτ ) +
∑T

τ=t ψτ (hτ ) + η
∑T

τ=t cτ (hτ )

subject to hτ = ft(hτ−1, dτ ), τ = t, . . . , T,

dτ = Atbτ , 0 ≤ dτ ≤ Dτ , 0 ≤ bτ ≤ Bτ , τ = t, . . . , T

(3.11)
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with variables (bt, . . . , bT ), (dt, . . . , dT ), and (ht, . . . , hT ) and violation penalty parame-

ter η > 0. Since cτ is convex, problem (3.11) is convex and can be solved using a slight

variation on Algorithm 3.4.1. Let b̄ = (b̄t, . . . , b̄T ) be the optimal treatment plan. We

carry out only the first treatment, b̄t, and update our observations At+1, ft+1, and ht

based on the patient’s response. This process repeats until all T sessions have been

completed.

3.5.2 Illustrative example

Problem instance. We return to the setting of Example 3.4.2, except now, the

health dynamics are modeled with some error. Specifically, let ht−1 be the patient’s

health status at the beginning of session t and dt the dose delivered during session t.

Our model predicts the status will become ĥt = ft(ht−1, dt). In fact, at the beginning

of the next session, we observe the true health status to be

(ht)i =

max(ĥt + ωt, 0)i i ∈ T

min(ĥt + ωt, 0)i i /∈ T
,

where ωt ∈ RK is drawn from N(µ, σ2I). This random process continues for t =

1, . . . , T .

For this example, we choose µ = 0 and σ = 0.1. The rest of the functions and

parameter values are identical to 3.4.2. In particular, we still employ the LQ model

(3.2) with constant αt, βt, and γt even though the health status is now stochastic.

We plan the treatment using MPC with η = 104 and compare the results to those

generated by the naive approach, which simply solves problem (3.4) once prior to

session 1.

Computational details. We solved problem (3.11) using Algorithm 3.4.1 with

λ = 104 and ε = 10−3. For the initial dose in session 1, we chose d0 = 0. In each

subsequent session t, we set d0 to be the (truncated) optimal dose point from the

previous session, (d?t , . . . , d
?
T ). With these parameters, the algorithm took an average

of 7 iterations per session to achieve convergence; most runs completed in only 3–4
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iterations. The total runtime was 116 seconds.

Results and analysis. Figure 3.4 depicts the treatment plan output by MPC.

Most beams are aimed slightly diagonal from the vertical, similar to the naive plan

(Figure 3.2) up to session 14. Then, the bundles of beams start to grow sparser and

fan out, hitting more areas of the OARs. This sparse irradiation pattern continues

until the final session, when there is a brief spike in intensity to bring the target’s

health status into the desired range.

In Figure 3.5a, we plot the dose trajectories of the MPC plan (green) and the

naive plan (blue). The MPC curves are more jagged with a large spike at the end

of treatment. However, in each structure, the area under the MPC and naive dose

curves remains on par. Thus, we conclude that the MPC plan delivers about the

same amount of radiation as the naive plan, only spread across a wider range of beam

angles/intensities so as to compensate for uncertainty in the health dynamics model.

This strategy results in better patient health as shown in Figure 3.5b. The MPC

plan reduces the target’s health status to 0.05, while maintaining the health status

of the OARs at a high level. Indeed, the health of these organs under the MPC plan

exceeds their health under the naive plan by a significant margin in all but structure

4, where the two are relatively equal up until the last session.

3.6 Operator splitting

MPC enables us to robustly handle uncertainty over time. However, another challenge

in radiation treatment planning is the sheer size of problems, which makes them

computationally difficult to solve in practice. A typical case with K = 15 and n = 104

requires approximately 105 floating-point operations for the beam-to-dose calculation

alone. Over a month of sessions, that comes out to 4.5 million operations on a single

machine.

In this section, we propose a fast, efficient method for solving the radiation treat-

ment planning problem using operator splitting. Our method is distributed and

scales readily with the number of beams as well as the length of treatment. It can
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Figure 3.4: Optimal beam intensities for Example 3.5.2 using MPC.

be applied both to the original problem (3.4) and the soft constrained MPC variant

(3.11). Below, we describe the mathematical details for the former; the latter is a

straightforward extension.

3.6.1 Consensus form

We first rewrite problem (3.4) in an equivalent consensus form:

minimize
∑T

t=1 φt(dt) +
∑T

t=1 ψt(ht)

subject to ht = ft(ht−1, d̃t), 0 ≤ d̃t ≤ Dt, t = 1, . . . , T,

hti ≤ Hti, i ∈ T , hti ≥ Hti, i /∈ T , t = 1, . . . , T,

dt = Atbt, 0 ≤ dt ≤ Dt, 0 ≤ bt ≤ Bt, t = 1, . . . , T,

dt = d̃t, t = 1, . . . , T

(3.12)

with additional variable d̃ = (d̃1, . . . , d̃T ). This splits the problem into two parts,

one that encapsulates the radiation physics and the other that contains the health

dynamics. The parts share no variables. They are only linked by the consensus

constraint, dt = d̃t, which requires their doses be equal.
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(a) Dose Trajectories

(b) Health Trajectories

Figure 3.5: Optimal (a) radiation dose and (b) health status trajectories for Example
3.5.2 using MPC (green) and a naive planning approach (blue). The MPC plan’s
health trajectories all remain within the desired bounds, despite the error in the
health dynamics model.
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3.6.2 ADMM

We solve problem (3.12) using an iterative algorithm called the alternating direction

method of multipliers (ADMM) (Boyd et al., 2010). In ADMM, the beams and health

statuses are optimized separately, taking into account the difference between their re-

sulting dose values. This difference is associated with a dual variable u = (u1, . . . , uT ),

where each ut ∈ RK , which is updated every iteration in order to promote consensus.

Algorithm 3.6.1 ADMM algorithm.

input: initial point (d̃0, u0), parameter ρ > 0.

for k = 0, 1, . . . do

1. Calculate beams. For t = 1, . . . , T , set the value of (bk+1
t , dk+1

t ) to a

solution of the problem

minimize φt(dt) + ρ
2‖dt − d̃

k
t − ukt ‖22

subject to dt = Atbt, 0 ≤ dt ≤ Dt, 0 ≤ bt ≤ Bt.
2. Calculate health trajectory. Set the value of (hk+1, d̃k+1) to a solution

of the problem

minimize
∑T

t=1 ψt(ht) + ρ
2‖d̃− d

k+1 + uk‖22
subject to ht = ft(ht−1, d̃t), 0 ≤ d̃t ≤ Dt, t = 1, . . . , T,

hti ≤ Hti, i ∈ T , hti ≥ Hti, i /∈ T , t = 1, . . . , T.

3. Update dual variables. uk+1 := uk + d̃k+1 − dk+1.

until stopping criterion (3.17) is satisfied.

Here 1/ρ > 0 may be interpreted as the step size. Notice that the first step of Algo-

rithm 3.6.1 can be parallelized across sessions. We impose the dose bound constraint

on both the beam and health subproblems because it produces faster convergence in

practice.

Initialization. For complex problems, the initial dose point d̃0 can have a significant

impact on the performance of Algorithm 3.6.1. Below, we describe one heuristic that
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produces a good starting point by solving a series of simple optimization problems.

We begin by solving the static treatment planning problem

minimize φ1(d1) + ψ1(h1) + µ1T ζ

subject to h1 = f1(h0, d1), ζ ≥ 0,

h1i ≤ HT i, i ∈ T , h1i ≥ HT i − ζi, i /∈ T ,
d1 = A1b1, 0 ≤ d1 ≤

∑T
t=1Dt, 0 ≤ b1 ≤

∑T
t=1Bt

(3.13)

with respect to b1 ∈ Rn, d1 ∈ RK , h1 ∈ RK , and ζ ∈ RK , where µ > 0 is a slack

penalty parameter. A reasonable choice for µ = 1
K−|T | , assuming there is at least one

non-target structure. Problem (3.13) is convex and can be easily handled on a single

machine (e.g., via interior-point methods) for up to 105 beams. Denote the optimal

beam intensities by bstat.

Next, we consider the dynamic treatment planning problem in which the beams

for each session are restricted to be a scalar multiple of bstat,

minimize
∑T

t=1 φt(dt) +
∑T

t=1 ψt(ht) + µ
∑T

t=1 1T ζt

subject to ht = ft(ht−1, dt), ζt ≥ 0, t = 1, . . . , T,

hti ≤ Hti, i ∈ T , hti ≥ Hti − ζti, i /∈ T , t = 1, . . . , T,

dt = νtAtb
stat, 0 ≤ dt ≤ Dt, νt ≥ 0, t = 1, . . . , T

(3.14)

with variables (ν1, . . . , νT ), (d1, . . . , dT ), (h1, . . . , hT ), and (ζ1, . . . , ζT ), where each νt ∈
R and ζt ∈ RK . This problem can be solved using a slight variation on Algorithm

3.4.1. (For the initial CCP point, we may use the optimal time-invariant νt = ν when

βt = 0; finding this value entails solving a small convex problem). Since there are

only O(TK) variables, convergence is generally quick, taking less than 5 iterations

in our experiments. We use the resulting doses as our initial dose point for ADMM,

i.e., d̃0
t = ν?tAtb

stat for t = 1, . . . , T .

Besides providing a good starting point, this initialization heuristic also gives us

a way to quickly tune problem parameters. If the health trajectory from d̃0 is poor,

it is much faster to modify weights and re-solve problems (3.13) and (3.14) than it is

to re-run the full ADMM algorithm.
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Stopping criterion. If problem (3.12) is convex, then under mild conditions, ADMM

converges to a solution assuming one exists. Moreover, the primal and dual residuals

rkprim = dk − d̃k (3.15)

rkdual = ρ(d̃k − d̃k−1) (3.16)

also converge to zero. Thus, a reasonable stopping criterion is

‖rkprim‖2 ≤ εprim and ‖rkdual‖2 ≤ εdual, (3.17)

where εprim > 0 and εdual > 0 are tolerances for primal and dual feasibility, respec-

tively. Typically, these tolerances are chosen with respect to absolute and relative

cutoffs εabs > 0 and εrel > 0 using the relation

εprim = εabs

√
TK + εrel max(‖dk‖2, ‖d̃k‖2)

εdual = εabs

√
TK + εrel‖uk‖2.

A common choice for εrel = 10−3, while the choice for εabs depends on the scale of the

treatment planning problem (Boyd et al., 2010, Section 3.3.1).

Convergence and choice of ρ. When the problem is convex, i.e., the health

dynamics function is affine, Algorithm 3.6.1 converges to a solution for any ρ > 0,

although the value of ρ may have an impact on the practical convergence rate. When

the problem is nonconvex, ADMM is a heuristic and the final beam/dose plan can

depend directly on ρ (Boyd et al., 2010, Section 9). The question of how to choose ρ

is still unsettled; see Ghadimi et al. (2015); Xu et al. (2017b,a) for further discussion

on the topic. We have found that for data on the order of one, values of ρ between

10−2 and 102 work reasonably well.
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Table 3.1: Prostate IMRT: LQ Model Parameters

i Structure αti βti γti

1 Prostate 0.15 0.05

{
0 t ≤ 28

0.0173 t > 28

2 Urethra 1 0.2 0
3 Bladder 1 0.2 0
4 Rectum 1 0.2 0
5 L. Femoral Head 1 0.25 0
6 R. Femoral Head 1 0.25 0
7 Body 1 0.3333 0

3.6.3 Clinical example

Problem instance. We test our method on a fluence map optimization of a prostate

cancer IMRT case with n = 34848 beams and K = 7 structures consisting of a single

PTV (i = 1), five OARs, and generic body voxels (i = 7). Treatment is carried out

over T = 45 sessions, so the planning problem has about 1.6 million variables. The

matrix At remains constant over time and maps the beam intensities to the average

dose per structure, i.e., (dt)i is the total dose to structure i divided by the number of

voxels in i. Each beam’s intensity cannot exceed Bt = 0.025.

The LQ model parameters, initial health status, and dose and health status bounds

can be found in Tables 3.1 and 3.2; these have been adapted from prior clinical

datasets (Kehwar, 2005; Gao et al., 2010; Marks et al., 2010; van Leeuwen et al.,

2018). We choose the health and dose penalty functions to be

ψt(ht) = (ht1)+ +
1

6

7∑
i=2

(hti)−, φt(dt) =
6∑
i=1

d2
ti + 0.25d2

t7, t = 1, . . . , T.

These penalties place greater importance on reducing the health status of the PTV

compared to sparing the OARs or generic body tissue.

Computational details. The computational setup is the same as in Example 3.4.2.

To solve the ADMM subproblems, we used MOSEK and ran CCP (λ = 104) on the
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Table 3.2: Prostate IMRT: Health and Dose Parameters

i Structure h0i Hti Dti

1 Prostate 5.8579


5.8579 t ≤ 14

4.4716 15 ≤ t ≤ 31

0 t > 31

10

2 Urethra 0 -4.8 10
3 Bladder 0 -4.8 10
4 Rectum 0 -4.8 10
5 L. Femoral Head 0 -3.0 10
6 R. Femoral Head 0 -3.0 10
7 Body 0 -6.0 10

health trajectory subproblem. With ρ = 80, ADMM converged in 82 iterations to

cutoffs of εabs = 10−2 and εrel = 10−3. The normed residuals, ‖rkprim‖2 and ‖rkdual‖2, are

shown in Figure 3.6. Total runtime was about 43 minutes, with the bulk of that time

spent on the main ADMM loop (initialization took only 32 seconds). By contrast, a

straightforward application of Algorithm 3.4.1 to this problem required over an hour.

Results and analysis. Figure 3.7 depicts the dose trajectories resulting from the

initial plan (green) and the final plan output by ADMM (blue). The initial plan is

essentially a piecewise equal-dose fractionation scheme, reflected by the flat plateaus

in the corresponding dose trajectories. This already gives us a good approximation

of the final plan: both plans maintain a relatively high dose to the PTV of about

0.9 Gy until session 31, then drop off sharply to the same constant doses thereafter.

However, during the high dose phase, the final plan gradually increases the dosage

over time to all structures except the bladder (i = 3). By adapting dynamically to

changes in the patient’s anatomy, it is able to deliver more dose per session and thus

achieve better tumor control, while still respecting the limits on the OARs’ health

statuses.

Indeed, we see in Figure 3.8 that the final plan exactly attains the desired PTV

health status of zero for t > 31. It must sacrifice some OARs to do this, reducing the

health statuses of the urethra, rectum, and right femoral head (i = 2, 4, and 6) to
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Figure 3.6: Primal and dual residual `2-norms for Example 3.6.3.

their lower bounds, but never violates those bounds. In fact, by shifting radiation to

other structures, the final plan actually improves the health of the bladder over that

from the initial plan, which results in a h3(t) far below the limit of −4.8 for t ≥ 35.

Overall, it is clear that the combination of a solid initialization heuristic and ADMM

produces a treatment plan that satisfies or even exceeds all of our clinical goals.

3.7 Implementation

We provide an implementation of our adaptive radiation treatment planning method

in AdaRad, an open-source Python software package based on CVXPY (Diamond and

Boyd, 2016). Our implementation is fully distributed, leveraging Python’s built-in

multiprocessing library to execute solves in parallel. Users can quickly import patient

data, define clinical goals, construct treatment plans, and visualize the results. They
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Figure 3.7: Optimal radiation dose trajectory for Example 3.6.3. The initial plan
(green) depicts the dose output by the initialization heuristic described in Section
3.6.2, while the final plan (blue) depicts the dose output by the ADMM algorithm.
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Figure 3.8: Optimal health trajectories resulting from the doses in Figure 3.7.
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can also rapidly modify and re-plan a case, allowing for comparisons between different

prescriptions and treatment lengths. Moreover, since AdaRad is a Python library,

it can be easily integrated with other libraries (e.g., for image processing) used in

radiation therapy.

The code below imports some patient data and a prescription, solves for the

optimal treatment plan, and plots the resulting dose and health trajectories.

import adarad, numpy

from adarad import Case, CasePlotter

# Construct the clinical case.

> case = Case()

> case.import_file("/examples/patient_01-case.yaml")

> case.physics.dose_matrix = numpy.load("/examples/patient_01-dmat.npy")

# Solve using ADMM algorithm.

> status, result = case.plan(slack_weight = 50, max_iter = 100,

solver = ECOS, use_admm = True)

> print("Solve status: {}".format(status))

> print("Solve time: {}".format(result.solver_stats.solve_time))

> print("Iterations: {}".format(result.solver_stats.num_iters))

# Plot the dose and health trajectories.

> caseviz = CasePlotter(case)

> caseviz.plot_treatment(result, stepsize = 10)

> caseviz.plot_health(result, stepsize = 10)

In this example, the dose matrix At is the same for all t and stored in a sin-

gle *.npy file. AdaRad also supports other sparse data representations, such as

scipy.csc matrix. To specify a time-varying dose matrix, the user would input a

list of matrices in order [A1, . . . , AT ].

We start by constructing a Case, which contains Anatomy, Physics, and Prescription
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objects. The Anatomy and Physics must be defined prior to planning, either by man-

ually specifying them in the code or importing a case description. A description is a

YAML file that contains at minimum the keys treatment length and structures,

where the latter is a list of anatomical structures i = 1, . . . , K, each of which has a

name, is target boolean indicator, and alpha, beta, and gamma values corresponding

to the LQ model parameters. The initial health status and health and dose bounds

may also be specified.

Once the Case is defined, we can solve for the optimal treatment plan. The plan

function implements Algorithms 3.4.1 and 3.6.1 (the latter with use admm = True). It

takes as optional input d init: the initial dose point, use slack: a boolean indicating

whether to include slack variable δ, slack weight: the slack penalty parameter λ,

max iter: the maximum number of iterations, and solver: the convex solver to

use for the beam and health subproblems. In the above example, we call the solver

ECOS (Domahidi et al., 2013), one of several free, open-source solvers packaged with

CVXPY. If MOSEK is installed, we can call it as well by passing solver = MOSEK

into the planning function.

After the algorithm finishes, plan saves the results in case.current plan and

returns the final solve status along with a RunRecord object that carries solver per-

formance data, such as the total runtime, and the optimal variable values. To visualize

the resulting plan, we instantiate a CasePlotter object and call plot treatment and

plot health on the RunRecord to display the dose and health trajectories, respec-

tively. We can also extract the optimal beams, doses, and health statuses with, e.g.,

result.beams for further processing.

If we wish to explore alternate plans, we can easily modify the dose and health

status constraints of any structure and re-plan the case. Re-planning is generally fast,

since AdaRad uses the previously stored solution as a warm start point. In a typical

workflow, we may import a prescription formed from general clinical guidelines, then

repeatedly adjust the dose/health status bounds until we obtain a treatment plan

with our desired properties. The case.current plan will be updated with the new

optimal values after each run. To keep a history of plans for comparison, we can save

our results in the Case by calling save plan before re-optimizing. The code below
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provides an example of changing the upper dose bound on the PTV to Dti = 10 Gy

for all sessions and plotting the dose and health trajectories under this new constraint

alongside the trajectories of the original plan.

# Save previous treatment plan.

> case.save_plan("Original Plan")

# Constraint allows maximum of 10 Gy per session on the PTV.

> case.prescription["PTV"].dose_upper = 10

# Re-plan the case with new dose constraint.

> status2, result2 = case.plan(slack_weight = 50, max_iter = 100,

solver = ECOS, use_admm = True)

> print("Solve status: {}".format(status2))

# Compare original and new treatment plans.

> caseviz.plot_treatment(result2, stepsize = 10, label = "New Plan",

plot_saved = True)

> caseviz.plot_health(result2, stepsize = 10, label = "New Plan",

plot_saved = True)

For more details on AdaRad’s functions as well as additional examples, see the doc-

umentation at https://github.com/anqif/adarad.

3.8 Conclusion

To achieve the best outcomes, radiation therapy must adapt to new information about

the patient’s health and anatomy during treatment. We have described one method

for adaptive radiation treatment planning using an operator splitting algorithm. Our

method is highly scalable, parallelizable, and can efficiently handle a large number of

beams and sessions. Moreover, it is robust to errors in the patient’s health response

https://github.com/anqif/adarad
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model, as well as other sources of uncertainty in the clinic. We demonstrated its effec-

tiveness on a large prostate cancer case and showed that the resulting plan improves

markedly on a standard equal-dose fractionation scheme.



Chapter 4

A Domain Specific Language for

Convex Optimization

4.1 Introduction

In this chapter, we shift our focus to general convex optimization, particularly opti-

mization applied to problems in statistical modeling. Some examples of optimization-

based models are least squares, ridge and lasso regression, isotonic regression, Hu-

ber regression, support vector machines, and sparse inverse covariance estimation.

Koenker and Mizera (2014) discuss the role of convex optimization in statistics and

provide a survey of packages for solving such problems in R (R Core Team, 2020). Our

package, CVXR (Fu et al., 2020b), solves a broad class of convex optimization prob-

lems, which includes those noted above as well as many other models and methods

in statistics.

Similar systems already exist, such as CVX (Grant and Boyd, 2014) and YALMIP

(Lofberg, 2004) in MATLAB (The MathWorks Inc., 2019), CVXPY (Diamond and

Boyd, 2016) in Python (van Rossum et al., 2011), and Convex.jl (Udell et al., 2014)

in Julia (Bezanson et al., 2012). CVXR brings these capabilities to R, providing a

domain-specific language (DSL) that allows users to easily formulate and solve new

problems for which custom code does not exist. As an illustration, suppose we are

given X ∈ Rm×n and y ∈ Rm, and we want to solve the ordinary least squares (OLS)

62
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problem

minimize
β

‖y −Xβ‖2
2

with optimization variable β ∈ Rn. This problem has a well-known analytical solu-

tion, which can be determined using lm in the default stats package. In CVXR, we

can solve for β using the code

R> beta <- Variable(n)

R> obj <- sum((y - X %*% beta)^2)

R> prob <- Problem(Minimize(obj))

R> result <- solve(prob)

The first line declares our variable, the second line forms our objective function, the

third line defines the optimization problem, and the last line solves this problem by

converting it into a second-order cone program and sending it to one of CVXR’s

solvers. The results are retrieved with

R> result$value # Optimal objective

R> result$getValue(beta) # Optimal variables

R> result$solve_time # Solver runtime

This code runs slower and requires additional set-up at the beginning. So far, it does

not look like an improvement on stats::lm. However, suppose we add a constraint

to our problem:

minimize
β

‖y −Xβ‖2
2

subject to βj ≤ βj+1, j = 1, . . . , n− 1.

This is a special case of isotonic regression. Now, we can no longer use stats::lm

for the optimization. We would need to find another R package tailored to this type

of problem such as nnls (Mullen and van Stokkum, 2012) or write our own custom

solver. With CVXR though, we need only add the constraint as a second argument

to the problem:

R> prob <- Problem(Minimize(obj), list(diff(beta) >= 0))
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Our new problem definition includes the coefficient constraint, and a call to solve will

produce its solution. In addition to the usual results, we can get the dual variables

with

R> result$getDualValue(constraints(prob)[[1]])

This example demonstrates CVXR’s chief advantage: flexibility. Users can quickly

modify and re-solve a problem, making our package ideal for prototyping new sta-

tistical methods. Its syntax is simple and mathematically intuitive. Furthermore,

CVXR combines seamlessly with native R code as well as several popular packages,

allowing it to be incorporated easily into a larger analytical framework. The user can,

for instance, apply resampling techniques like the bootstrap to estimate variability,

as we show in Section 4.3.2.

DSLs for convex optimization are already widespread on other application plat-

forms. In R, users have access to the packages listed in the CRAN Task View for

Optimization and Mathematical Programming (Theußl et al., 2020). Packages like

optimx (Nash and Varadhan, 2011) and nloptr (Johnson, 2008) provide access to

a variety of general algorithms, which can handle nonlinear and certain classes of

nonconvex problems. CVXR, on the other hand, offers a language to express convex

optimization problems using R syntax, along with a tool for analyzing and restructur-

ing them for the solver best suited to their type. ROI (Theußl et al., 2017) is perhaps

the package closest to ours in spirit. It offers an object-oriented framework for defin-

ing optimization problems, but still requires users to explicitly identify the type of

every objective and constraint, whereas CVXR manages this process automatically.

In the next section, we provide a brief mathematical overview of convex opti-

mization. Interested readers can find a full treatment in Boyd and Vandenberghe

(2004). Then we give a series of examples ranging from basic regression models to

semidefinite programming, which demonstrate the simplicity of problem construction

in CVXR. Finally, we describe the implementation details before concluding. Our

package and the example code for this chapter are available on the Comprehensive R

Archive Network (CRAN) at https://CRAN.R-project.org/package=CVXR and the

official CVXR site at https://cvxr.rbind.io.

https://CRAN.R-project.org/package=CVXR
https://cvxr.rbind.io
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4.2 Disciplined convex optimization

The general convex optimization problem is of the form

minimize
v

f0(v)

subject to fi(v) ≤ 0, i = 1, . . . ,M

Av = b,

where v ∈ Rn is our variable of interest, and A ∈ Rm×n and b ∈ Rn are constants

describing our linear equality constraints. The objective and inequality constraint

functions f0, . . . , fM are convex, i.e., they are functions fi : Rn → R that satisfy

fi(θu+ (1− θ)v) ≤ θfi(u) + (1− θ)fi(v)

for all u, v ∈ Rn and θ ∈ [0, 1]. This class of problems arises in a variety of fields,

including machine learning and statistics.

A number of efficient algorithms exist for solving convex problems (Wright, 1997;

Boyd et al., 2010; Andersen et al., 2011; Skajaa and Ye, 2015). However, it is unnec-

essary for the CVXR user to know the operational details of these algorithms. CVXR

provides a DSL that allows the user to specify the problem in a natural mathematical

syntax. This specification is automatically converted into the standard form ingested

by a generic convex solver. See Section 4.4 for more on this process.

In general, it can be difficult to determine whether an optimization problem is

convex. We follow an approach called disciplined convex programming (DCP; Grant

et al., 2006) to define problems using a library of basic functions (atoms), whose

properties like curvature, monotonicity, and sign are known. Adhering to the DCP

rule,

f(g1, . . . , gk) is convex if f is convex and for each i = 1, . . . , k, either

� gi is affine,

� gi is convex and f is increasing in argument i, or

� gi is concave and f is decreasing in argument i,



CHAPTER 4. A DSL FOR CONVEX OPTIMIZATION 66

we combine these atoms such that the resulting problem is convex by construction.

Users will need to become familiar with this rule if they wish to define complex

problems.

The library of available atoms is provided in the documentation. It covers an

extensive array of functions, enabling any user to model and solve a wide variety of

sophisticated optimization problems. In the next section, we provide sample code for

just a few of these problems, many of which are cumbersome to prototype or solve

with other R packages.

4.3 Examples

In the following examples, we are given a dataset (xi, yi) for i = 1, . . . ,m, where

xi ∈ Rn and yi ∈ R. We represent these observations in matrix form as X ∈ Rm×n

with stacked rows x>i and y ∈ Rm. Generally, we assume that m > n.

4.3.1 Regression

Robust (Huber) regression

In Section 4.1, we saw an example of OLS in CVXR. While least squares is a popular

regression model, one of its flaws is its high sensitivity to outliers. A single outlier

that falls outside the tails of the normal distribution can drastically alter the resulting

coefficients, skewing the fit on the other data points. For a more robust model, we

can fit a Huber regression (Huber, 1964) instead by solving

minimize
β

∑m
i=1 φ(yi − x>i β)

for variable β ∈ Rn, where the loss is the Huber function with threshold M > 0,

φ(u) =

1
2
u2 if |u| ≤M

M |u| − 1
2
M2 if |u| > M.
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This function is identical to the least squares penalty for small residuals, but on large

residuals, its penalty is lower and increases linearly rather than quadratically. It is

thus more forgiving of outliers.

In CVXR, the code for this problem is

R> beta <- Variable(n)

R> obj <- sum(huber(y - X %*% beta, M))

R> prob <- Problem(Minimize(obj))

R> result <- solve(prob)

Note the similarity to the OLS code. As before, the first line instantiates the n-

dimensional optimization variable, and the second line defines the objective function

by combining this variable with our data using CVXR’s library of atoms. The only

difference this time is we call the huber atom on the residuals with threshold M, which

we assume has been set to a positive scalar constant. Our package provides many

such atoms to simplify problem definition for the user.

Quantile regression

Another variation on least squares is quantile regression (Koenker, 2005). The loss is

the tilted l1 function,

φ(u) = τ max(u, 0)− (1− τ) max(−u, 0) =
1

2
|u|+

(
τ − 1

2

)
u,

where τ ∈ (0, 1) specifies the quantile. The problem as before is to minimize the

total residual loss. This model is commonly used in ecology, healthcare, and other

fields where the mean alone is not enough to capture complex relationships between

variables. CVXR allows us to create a function to represent the loss and integrate it

seamlessly into the problem definition, as illustrated below.

R> quant_loss <- function(u, tau) 0.5 * abs(u) + (tau - 0.5) * u

R> obj <- sum(quant_loss(y - X %*% beta, t))

R> prob <- Problem(Minimize(obj))

R> result <- solve(prob)
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Here t is the user-defined quantile parameter. We do not need to create a new

‘Variable’ object, since we can reuse beta from the previous example.

By default, the solve method automatically selects the CVXR solver most spe-

cialized to the given problem’s type. This solver may be changed by passing in an

additional solver argument. For instance, the following line fits our quantile regres-

sion with SCS (O’Donoghue et al., 2016).

R> result <- solve(prob, solver = "SCS")

Elastic net regularization

Often in applications, we encounter problems that require regularization to prevent

overfitting, introduce sparsity, facilitate variable selection, or impose prior distri-

butions on parameters. Two of the most common regularization functions are the

l1-norm and squared l2-norm, combined in the elastic net regression model (Hastie

and Zou, 2005; Friedman et al., 2010),

minimize
β

1
2m
‖y −Xβ‖2

2 + λ(1−α
2
‖β‖2

2 + α‖β‖1).

Here λ ≥ 0 is the overall regularization weight and α ∈ [0, 1] controls the relative

l1 versus squared l2 penalty. Thus, this model encompasses both ridge (α = 0) and

lasso (α = 1) regression.

To solve this problem in CVXR, we first define a function that calculates the

regularization term given the variable and penalty weights.

R> elastic_reg <- function(beta, lambda = 0, alpha = 0) {

+ ridge <- (1 - alpha) * sum(beta^2)

+ lasso <- alpha * p_norm(beta, 1)

+ lambda * (lasso + ridge)

+ }

Then, we add it to the scaled least squares loss.

R> loss <- sum((y - X %*% beta)^2)/(2 * m)
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R> obj <- loss + elastic_reg(beta, lambda, alpha)

R> prob <- Problem(Minimize(obj))

R> result <- solve(prob)

The advantage of this modular approach is that we can easily incorporate elastic

net regularization into other regression models. For instance, if we wanted to run

regularized Huber regression, CVXR allows us to reuse the above code with just a

single changed line,

R> loss <- sum(huber(y - X %*% beta, M))

Logistic regression

Suppose now that yi ∈ {0, 1} is a binary class indicator. One of the most popular

methods for binary classification is logistic regression (Cox, 1958; Freedman, 2009).

We model the conditional response as y|x ∼ Bernoulli(gβ(x)), where gβ(x) = 1

1+e−x>β

is the logistic function, and maximize the log-likelihood function, yielding the opti-

mization problem

maximize
β

∑m
i=1{yi log(gβ(xi)) + (1− yi) log(1− gβ(xi))}.

CVXR provides the logistic atom as a shortcut for f(z) = log(1 + ez), so our

problem is succinctly expressed as

R> obj <- -sum(X[y == 0, ] %*% beta) - sum(logistic(-X %*% beta))

R> prob <- Problem(Maximize(obj))

R> result <- solve(prob)

The user may be tempted to type log(1 + exp(X %*% beta)) as in conventional

R syntax. However, this representation of f(z) violates the DCP composition rule, so

the CVXR parser will reject the problem even though the objective is convex. Users

who wish to employ a function that is convex, but not DCP compliant should check

the documentation for a custom atom or consider a different formulation.
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Figure 4.1: Logistic regression with constraints using data from The MathWorks Inc.
(2018). The addition of constraint (4.1) moves the coefficients for customer age and
customer income closer to each other.

We can retrieve the optimal objective and variables just like in OLS. More inter-

estingly, we can evaluate various functions of these variables as well by passing them

directly into result$getValue. For instance, the log-odds are

R> log_odds <- result$getValue(X %*% beta)

This will coincide with the ratio we get from computing the probabilities directly:

R> beta_res <- result$getValue(beta)

R> y_probs <- 1 / (1 + exp(-X %*% beta_res))

R> log(y_probs / (1 - y_probs))

We illustrate with a logistic regression fit from a credit scoring example (The Math-

Works Inc., 2018). The nine regression coefficients other than the intercept are con-

strained to be in the unit interval. To reflect the correlation between two of the

covariates, customer age (x2) and customer income (x6), an additional constraint is

placed on the respective coefficients β2 and β6:

|β2 − β6| ≤ 0.5. (4.1)
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The code below demonstrates how the latter constraint can be specified by seamlessly

combining familiar R functions such as abs with standard indexing constructs.

R> constr <- list(beta[2:10] >= 0, beta[2:10] <= 1,

+ abs(beta[2] - beta[6]) <= 0.05)

R> prob <- Problem(Maximize(obj), constr)

R> result <- solve(prob)

R> beta_res_con <- result$getValue(beta)

Figure 4.1 compares the unconstrained and constrained fits and shows that the addi-

tion of constraint (4.1) pulls the coefficient estimates for customer age and customer

income towards each other.

Many other classification methods belong to the convex framework. For example,

the support vector classifier is the solution of a l2-norm minimization problem with

linear constraints, which we have already shown how to model. Support vector ma-

chines are a straightforward extension. The multinomial distribution can be used to

predict multiple classes, and estimation via maximum likelihood produces a convex

problem. To each of these methods, we can easily add new penalties, variables, and

constraints in CVXR, allowing us to adapt to a specific dataset or environment.

Sparse inverse covariance estimation

Assume we are given i.i.d. observations xi ∼ N(0,Σ) for i = 1, . . . ,m, and the

covariance matrix Σ ∈ Sn+, the set of symmetric positive semidefinite matrices, has a

sparse inverse S = Σ−1. Let Q = 1
m−1

∑m
i=1(xi−x̄)(xi−x̄)> be our sample covariance.

One way to estimate Σ is to maximize the log-likelihood with an l1-norm constraint

(Yuan and Lin, 2007; Banerjee et al., 2008; Friedman et al., 2008), which amounts to

the optimization problem

maximize
S

log det(S)− tr(SQ)

subject to S ∈ Sn+,
∑n

i=1

∑n
j=1 |Sij| ≤ α.

The parameter α ≥ 0 controls the degree of sparsity. Our problem is convex, so we

can solve it with
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R> S <- Variable(n, n, PSD = TRUE)

R> obj <- log_det(S) - matrix_trace(S %*% Q)

R> constr <- list(sum(abs(S)) <= alpha)

R> prob <- Problem(Maximize(obj), constr)

R> result <- solve(prob, solver = "SCS")

The PSD = TRUE argument to the Variable constructor restricts S to the positive

semidefinite cone. In our objective, we use CVXR functions for the log-determinant

and trace. The expression matrix trace(S %*% Q) is equivalent to sum(diag(S %*%

Q)), but the former is preferred because it is more efficient than making nested

function calls. However, a standalone atom does not exist for the determinant, so we

cannot replace log det(S) with log(det(S)) since det is undefined for a ‘Variable’

object.

Figure 4.2 depicts the solutions for a particular dataset with m = 1000, n = 10,

and S containing 26% non-zero entries represented by the black squares in the top

left image. The sparsity of our inverse covariance estimate decreases for higher α, so

that when α = 1, most of the off-diagonal entries are zero, while if α = 10, over half

the matrix is dense. At α = 4, we achieve the true percentage of non-zeros.

Saturating hinges

The following example comes from work on saturating splines in Boyd et al. (2018).

Adaptive regression splines are commonly used in statistical modeling, but the in-

stability they exhibit beyond their boundary knots makes extrapolation dangerous.

One way to correct this issue for linear splines is to require they saturate: remain

constant outside their boundary. This problem can be solved using a heuristic that is

an extension of lasso regression, producing a weighted sum of hinge functions, which

we call a saturating hinge.

For simplicity, consider the univariate case with n = 1. Assume we are given

knots t1 < t2 < · · · < tk where each tj ∈ R. Let hj be a hinge function at knot tj,
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(a) True inverse. (b) α = 10.

(c) α = 4. (d) α = 1.

Figure 4.2: Sparsity patterns for (a) inverse of true covariance matrix, and estimated
inverse covariance matrices with (b) α = 10, (c) α = 4, and (d) α = 1. The light blue
regions indicate where Sij = 0.

i.e., hj(x) = max(x− tj, 0), and define f(x) = w0 +
∑k

j=1wjhj(x). We want to solve

minimize
w0,w

∑m
i=1 `(yi, f(xi)) + λ‖w‖1

subject to
∑k

j=1wj = 0
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(b) Saturating hinges with outliers.

Figure 4.3: (a) Saturating hinges fit to the change in bone density for female patients
with λ = 0.01 (blue), λ = 0.5 (green), and λ = 1 (red). (b) Hinges refit to the
previous data with additional outliers (orange) using squared error (blue) and Huber
loss (red).

for variables (w0, w) ∈ R ×Rk. The function ` : R ×R → R is the loss associated

with every observation, and λ ≥ 0 is the penalty weight. In choosing our knots, we

set t1 = min(xi) and tk = max(xi) so that by construction, the estimate f̂ will be

constant outside [t1, tk].

We demonstrate this technique on the bone density data for female patients from

Hastie et al. (2001, Section 5.4). There are a total of m = 259 observations. Our

response yi is the change in spinal bone density between two visits, and our predictor

xi is the patient’s age. We select k = 10 knots about evenly spaced across the range

of X and fit a saturating hinge with squared error loss `(yi, f(xi)) = (yi − f(xi))
2.

In R, we first define the estimation and loss functions:

R> f_est <- function(x, knots, w0, w) {

+ hinges <- sapply(knots, function(t) pmax(x - t, 0))

+ w0 + hinges %*% w

+ }

R> loss_obs <- function(y, f) (y - f)^2

This allows us to easily test different losses and knot locations later. The rest of

the set-up is similar to previous examples. We assume that knots is a R vector
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representing (t1, . . . , tk).

R> w0 <- Variable(1)

R> w <- Variable(k)

R> loss <- sum(loss_obs(y, f_est(X, knots, w0, w)))

R> reg <- lambda * p_norm(w, 1)

R> obj <- loss + reg

R> constr <- list(sum(w) == 0)

R> prob <- Problem(Minimize(obj), constr)

R> result <- solve(prob)

The optimal weights are retrieved using separate calls, as shown below.

R> w0s <- result$getValue(w0)

R> ws <- result$getValue(w)

We plot the fitted saturating hinges in Figure 4.3a. As expected, when λ increases,

the spline exhibits less variation and grows flatter outside its boundaries. The squared

error loss works well in this case, but as we saw previously in this section, the Huber

loss is preferred when the dataset contains large outliers. We can change the loss

function by simply redefining

R> loss_obs <- function(y, f, M) huber(y - f, M)

and passing an extra threshold parameter in when initializing loss. In Figure 4.3b,

we have added 50 randomly generated outliers to the bone density data and plotted

the re-fitted saturating hinges. For a Huber loss with M = 0.01, the resulting spline

is fairly smooth and follows the shape of the original data, as opposed to the spline

using squared error loss, which is biased upwards by a significant amount.

4.3.2 Nonparametric estimation

Log-concave distribution estimation

Let n = 1 and suppose xi are i.i.d. samples from a log-concave discrete distribution on

{0, . . . , K} for some K ∈ Z+. Define pk := Prob(X = k) to be the probability mass
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Figure 4.4: Log-concave estimation using the approach of Dümbgen and Rufibach
(2011) and CVXR.

function. One method for estimating (p0, . . . , pK) is to maximize the log-likelihood

function subject to a log-concavity constraint (Dümbgen and Rufibach, 2009), i.e.,

maximize
p

∑K
k=0Mk log pk

subject to p ≥ 0,
∑K

k=0 pk = 1,

pk ≥
√
pk−1pk+1, k = 1, . . . , K − 1,

where p ∈ RK+1 is our variable of interest and Mk represents the number of observa-

tions equal to k, so that
∑K

k=0 Mk = m. The problem as posed above is not convex.

However, we can transform it into a convex optimization problem by defining new

variables uk = log pk and relaxing the equality constraint to
∑K

k=0 pk ≤ 1, since the

latter always holds tightly at an optimal solution. The result is

maximize
u

∑K
k=0Mkuk

subject to
∑K

k=0 e
uk ≤ 1,

uk − uk−1 ≥ uk+1 − uk, k = 1, . . . , K − 1.
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If counts is the R vector of (M0, . . . ,MK), the code for our convex problem is

R> u <- Variable(K+1)

R> obj <- t(counts) %*% u

R> constr <- list(sum(exp(u)) <= 1, diff(u[1:K)]) >= diff(u[2:(K+1)]))

R> prob <- solve(Maximize(obj), constr)

R> result <- solve(prob)

Once the solver is finished, we can retrieve the probabilities directly with

R> pmf <- result$getValue(exp(u))

The above line transforms the variables uk to euk before calculating their resulting

values. This is possible because exp is a member of CVXR’s library of atoms, so it

can operate directly on a ‘Variable’ object such as u.

As an example, we consider the reliability data from Dümbgen and Rufibach

(2011) that was collected as part of a consulting project at the Institute for Mathe-

matical Statistics and Actuarial Science, University of Bern (Dümbgen and Rufibach,

2009). The dataset consists of n = 786 observations, and the goal is to fit a suitable

distribution to this sample that can be used for simulations. For various reasons

detailed in the paper, the authors chose a log-concave estimator, which they imple-

mented in the R package logcondens (Dümbgen and Rufibach, 2011). Figure 4.4 shows

that the curve obtained from the CVXR code above matches their results exactly.

Survey calibration

Calibration is a widely used technique in survey sampling. Suppose m sampling units

in a survey have been assigned initial weights di for i = 1, . . . ,m, and furthermore,

there are n auxiliary variables whose values in the sample are known. Calibration

seeks to improve the initial weights di by finding new weights wi that incorporate

this auxiliary information while perturbing the initial weights as little as possible,

i.e., the ratio gi = wi/di must be close to one. Such reweighting improves precision

of estimates (Lumley, 2010, Chapter 7).
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survey CVXR
School Type Target Met? Weight Frequency Weight Frequency

E Yes 29.00 15 29.00 15
H No 31.40 13 31.40 13
M Yes 29.03 9 29.03 9
E No 28.91 127 28.91 127
H Yes 31.50 12 31.50 12
M No 31.53 24 31.53 24

Table 4.1: Raking weight estimates with survey package and CVXR for California
Academic Performance Index data.

Let X ∈ Rm×n be the matrix of survey samples, with each column corresponding

to an auxiliary variable. Reweighting can be expressed as the optimization problem

minimize
∑m

i=1 diφ(gi)

subject to A>g = r

with respect to g ∈ Rm, where φ : R→ R is a strictly convex function with φ(1) = 0,

r ∈ Rn are the known population totals of the auxiliary variables, and A ∈ Rm×n is

related to X by Aij = diXij for i = 1, . . . ,m and j = 1, . . . , n. A common technique

is raking, which uses the penalty function φ(gi) = gi log(gi)− gi + 1.

We illustrate with the California Academic Performance Index data in the survey

package (Lumley, 2004, 2020), which also supplies facilities for calibration via the

function calibrate. Both the population dataset (apipop) and a simple random

sample of m = 200 (apisrs) are provided. Suppose that we wish to reweight the

observations in the sample using known totals for two variables from the population:

stype, the school type (elementary, middle or high) and sch.wide, whether the

school met the yearly target or not. This reweighting would make the sample more

representative of the general population.

The code below solves the problem in CVXR, where we have used a model matrix

to generate the appropriate dummy variables for the two factor variables.

R> m <- nrow(apisrs)

R> di <- apisrs$pw
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Figure 4.5: (a) A nearly-isotonic fit and (b) nearly-convex fit to global warming data
on temperature anomalies for λ = 0.44. The 95% normal confidence intervals are
shown in gray using R = 400 and R = 200 bootstrap samples, respectively.

R> formula <- ~ stype + sch.wide

R> r <- apply(model.matrix(object = formula, data = apipop), 2, sum)

R> X <- model.matrix(object = formula, data = apisrs)

R> A <- di * X

R> g <- Variable(m)

R> obj <- sum(di * (-entr(g) - g + 1))

R> constr <- list(t(A) %*% g == r)

R> prob <- Problem(Minimize(obj), constr)

R> result <- solve(prob)

R> w_cvxr <- di * result$getValue(g)

Table 4.1 shows that the results are identical to those obtained from survey. CVXR

can also accommodate other penalty functions common in the survey literature, as

well as additional constraints.
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Nearly-isotonic and nearly-convex fits

Given a set of data points y ∈ Rm, Tibshirani et al. (2011) fit a nearly-isotonic

approximation β ∈ Rm by solving

minimize
β

1
2

∑m
i=1(yi − βi)2 + λ

∑m−1
i=1 (βi − βi+1)+,

where λ ≥ 0 is a penalty parameter and x+ = max(x, 0). Our CVXR formulation

follows directly as shown below. The pos atom evaluates x+ elementwise on the input

expression.

R> near_fit <- function(y, lambda) {

+ m <- length(y)

+ beta <- Variable(m)

+ penalty <- sum(pos(diff(beta)))

+ obj <- 0.5 * sum((y - beta)^2) + lambda * penalty

+ prob <- Problem(Minimize(obj))

+ result <- solve(prob)

+ result$getValue(beta)

+ }

We demonstrate this technique on the global warming data provided by the Car-

bon Dioxide Information Analysis Center (CDIAC). Our data points are the annual

temperature anomalies relative to the 1961–1990 mean. Combining near fit with

the boot package (Canty and Ripley, 2020), we can obtain the standard errors and

confidence intervals for our estimate in just a few lines of code.

R> near_fit_stat <- function(data, index, lambda) {

+ sample <- data[index, ] # Bootstrap sample of rows

+ sample <- sample[order(sample$year), ] # Order ascending by year

+ near_fit(sample$annual, lambda)

+ }

R> boot.out <- boot(CDIAC, near_fit_stat, R = 400, lambda = 0.44)
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Figure 4.5a shows a nearly-isotonic fit with λ = 0.44 and 95% normal confidence

bands, which were generated using R = 400 bootstrap samples. The curve follows

the data well, but exhibits choppiness in regions with a steep trend.

For a smoother curve, we can solve for the nearly-convex fit described in the same

paper:

minimize
β

1
2

∑m
i=1(yi − βi)2 + λ

∑m−2
i=1 (βi − 2βi+1 + βi+2)+

This replaces the first difference term with an approximation to the second derivative

at βi+1. In CVXR, the only change necessary is the penalty line in near fit,

R> penalty <- sum(pos(diff(beta, differences = 2)))

The resulting curve is depicted in Figure 4.5b with 95% confidence bands generated

from R = 200 samples. Note the jagged staircase pattern has been smoothed out.

We can easily extend this example to higher-order differences or lags by modifying

the arguments to diff.

4.3.3 Miscellaneous applications

Worst case covariance

Suppose we have i.i.d. samples xi ∼ N(0,Σ) for i = 1, . . . ,m and want to determine

the maximum covariance of y = w>x =
∑m

i=1wixi, where w ∈ Rm is a given vector

of weights. We are provided limited information on the elements of Σ. For example,

we may know the specific value or sign of certain Σjk, which are represented by upper

and lower bound matrices L and U ∈ Rn×n, respectively (Boyd and Vandenberghe,

2004, pp. 171–172). This situation can arise when calculating the worst-case risk of

an investment portfolio (Lobo and Boyd, 2000). Formally, our optimization problem

is
maximize

Σ
w>Σw

subject to Σ ∈ Sn+, Ljk ≤ Σjk ≤ Ujk, j, k = 1, . . . , n.
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Consider the specific case

w =


0.1

0.2

−0.05

0.1

 , Σ =


0.2 + + ±
+ 0.1 − −
+ − 0.3 +

± − + 0.1

 ,

where a + means the element is non-negative, a − means the element is non-positive,

and a ± means the element can be any real number. In CVXR, this semidefinite

program is

R> Sigma <- Variable(n, n, PSD = TRUE)

R> obj <- t(w) %*% Sigma %*% w

R> constr <- list(Sigma[1, 1] == 0.2, Sigma[1, 2] >= 0, Sigma[1, 3] >= 0,

+ Sigma[2, 2] == 0.1, Sigma[2, 3] <= 0, Sigma[2, 4] <= 0,

+ Sigma[3, 3] == 0.3, Sigma[3, 4] >= 0, Sigma[4, 4] == 0.1)

R> prob <- Problem(Maximize(obj), constr)

R> result <- solve(prob, solver = "SCS")

Our result for this numerical case is

Σ =


0.2000 0.0967 0.0000 0.0762

0.0967 0.1000 −0.1032 0.0000

0.0000 −0.1032 0.3000 0.0041

0.0762 0.0000 0.0041 0.1000


This example can be generalized to include arbitrary convex constraints on Σ.

Furthermore, if we have a target estimate for the covariance, we can bound devia-

tions from the target by incorporating penalized slack variables into our optimization

problem.

Catenary problem

We consider a discretized version of the catenary problem in Griva and Vanderbei

(2005). A chain with uniformly distributed mass hangs from the endpoints (0, 1) and
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Figure 4.6: Solution of the catenary problem (blue) with a ground constraint (brown).

(1, 1) on a 2-D plane. Gravitational force acts in the negative y direction. Our goal

is to find the shape of the chain in equilibrium, which is equivalent to determining

the (x, y) coordinates of every point along its curve when its potential energy is

minimized.

To formulate this as an optimization problem, we parameterize the chain by its

arclength and divide it into m discrete links. The length of each link must be no more

than h > 0. Since mass is uniform, the total potential energy is simply the sum of

the y-coordinates. Therefore, our problem is

minimize
x,y

∑m
i=1 yi

subject to x1 = 0, y1 = 1, xm = 1, ym = 1

(xi+1 − xi)2 + (yi+1 − yi)2 ≤ h2, i = 1, . . . ,m− 1

with variables x ∈ Rm and y ∈ Rm. This basic catenary problem has a well-known

analytical solution (Gelfand and Fomin, 1963), which we can easily verify with CVXR.

R> x <- Variable(m)

R> y <- Variable(m)

R> obj <- sum(y)

R> constr <- list(x[1] == 0, y[1] == 0, x[m] == 1, y[m] == 1,

+ diff(x)^2 + diff(y)^2 <= h^2)
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R> prob <- Problem(Minimize(obj), constr)

R> result <- solve(prob)

A more interesting situation arises when the ground is not flat. Let g ∈ Rm be the

elevation vector (relative to the x-axis), and suppose the right endpoint of our chain

has been lowered by ∆ym = 0.5. The analytical solution in this case would be difficult

to calculate. However, we need only add two lines to our constraint definition,

R> constr[[4]] <- (y[m] == 0.5)

R> constr <- c(constr, y >= g)

to obtain the new result. Figure 4.6 depicts the solution of this modified catenary

problem for m = 101 and h = 0.02. The chain is shown hanging in blue, bounded

below by the red staircase structure, which represents the ground.

Portfolio optimization

In this example, we solve the Markowitz portfolio problem under various different

constraints (Markowitz, 1952; Roy, 1952; Lobo et al., 2007). We have n assets or

stocks in our portfolio and must determine the amount of money to invest in each.

Let wi denote the fraction of our budget invested in asset i = 1, . . . ,m, and let

ri be the returns (i.e., fractional change in price) over the period of interest. We

model returns as a random vector r ∈ Rn with known mean E[r] = µ and covariance

Var(r) = Σ. Thus, given a portfolio w ∈ Rn, the overall return is R = r>w.

Portfolio optimization involves a trade-off between the expected return E[R] =

µ>w and associated risk, which we take as the return variance Var(R) = w>Σw.

Initially, we consider only long portfolios, so our problem is

maximize
w

µ>w − γw>Σw

subject to w ≥ 0,
∑n

i=1wi = 1,

where the objective is the risk-adjusted return and γ > 0 is a risk aversion parameter.

R> w <- Variable(n)
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Figure 4.7: (a) Risk-return trade-off curve for various γ. Portfolios that invest com-
pletely in one asset are plotted in red. (b) Fraction of budget invested in each asset.

R> ret <- t(mu) %*% w

R> risk <- quad_form(w, Sigma)

R> obj <- ret - gamma * risk

R> constr <- list(w >= 0, sum(w) == 1)

R> prob <- Problem(Maximize(obj), constr)

R> result <- solve(prob)

In this case, it is necessary to specify the quadratic form with quad form rather than

the usual t(w) %*% Sigma %*% w because the latter will be interpreted by the CVXR

parser as a product of two affine terms and rejected for not being DCP. We can obtain

the risk and return by directly evaluating the value of the separate expressions:

R> result$getValue(risk)

R> result$getValue(ret)

Figure 4.7a depicts the risk-return trade-off curve for n = 10 assets and µ and Σ1/2

drawn from a standard normal distribution. The x-axis represents the standard de-

viation of the return. Red points indicate the result from investing the entire budget

in a single asset. As γ increases, our portfolio becomes more diverse (Figure 4.7b),

reducing risk but also yielding a lower return.

Many variations on the classical portfolio problem exist. For instance, we could

allow long and short positions, but impose a leverage limit ‖w‖1 ≤ Lmax by changing
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R> constr <- list(p_norm(w, 1) <= Lmax, sum(w) == 1)

An alternative is to set a lower bound on the return and minimize just the risk. To

account for transaction costs, we could add a term to the objective that penalizes

deviations of w from the previous portfolio. These extensions and more are described

in Boyd et al. (2017). The key takeaway is that all of these convex problems can be

easily solved in CVXR with just a few alterations to the code above.

Kelly gambling

In Kelly gambling (Kelly, 1956), we are given the opportunity to bet on n possible

outcomes, which yield a random non-negative return of r ∈ Rn
+. The return r takes

on exactly K values r1, . . . , rK with known probabilities π1, . . . , πK . This gamble is

repeated over T periods. In a given period t, let bi ≥ 0 denote the fraction of our

wealth bet on outcome i. Assuming the nth outcome is equivalent to not wagering

(it returns one with certainty), the fractions must satisfy
∑n

i=1 bi = 1. Thus, at the

end of the period, our cumulative wealth is wt = (r>b)wt−1. Our goal is to maximize

the average growth rate with respect to b ∈ Rn:

maximize
b

∑K
j=1 πj log(r>j b)

subject to b ≥ 0,
∑n

i=1 bi = 1.

In the following code, rets is the K by n matrix of possible returns with rows rj,

while ps is the vector of return probabilities (π1, . . . , πK).

R> b <- Variable(n)

R> obj <- t(ps) %*% log(rets %*% b)

R> constr <- list(b >= 0, sum(b) == 1)

R> prob <- Problem(Maximize(obj), constr)

R> result <- solve(prob)

We solve the Kelly gambling problem for K = 100 and n = 20. The probabilities

πj ∼ Uniform(0, 1), and the potential returns rji ∼ Uniform(0.5, 1.5) except for

rjn = 1, which represents the payoff from not wagering. With an initial wealth of
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Figure 4.8: Wealth trajectories for the Kelly optimal bets (red) and näıve bets (cyan).
The näıve betting scheme holds onto 15% of the wealth and splits the rest in direct
proportion to the expected returns.

w0 = 1, we simulate the growth trajectory of our Kelly optimal bets over P = 100

periods, assuming returns are i.i.d. over time.

R> bets <- result$getValue(b)

R> idx <- sample.int(K, size = P, probs = ps, replace = TRUE)

R> winnings <- rets[idx,] %*% bets

R> wealth <- w0 * cumprod(winnings)

For comparison, we also calculate the trajectory for a näıve betting scheme, which

holds onto 15% of the wealth at the beginning of each period and divides the other

85% over the bets in direct proportion to their expect returns.

Growth curves for five independent trials are plotted in Figure 4.8. Red lines

represent the wealth each period from the Kelly bets, while cyan lines are the result

of the näıve bets. Clearly, Kelly optimal bets perform better, producing greater net

wealth by the final period. However, as observed in some trajectories, wealth tends

to drop by a significant amount before increasing eventually. One way to reduce

this drawdown risk is to add a convex constraint as proposed in Busseti et al. (2016,
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Section 5.3),

log

(
K∑
j=1

exp(log πj − λ log(r>j b))

)
≤ 0,

where λ ≥ 0 is the risk-aversion parameter. With CVXR, this can be accomplished in

a single line using the log sum exp atom. Other extensions like wealth goals, betting

restrictions, and VaR/CVaR bounds are also readily incorporated.

Channel capacity

The following problem comes from an exercise in Boyd and Vandenberghe (2004,

pp. 207–208). Consider a discrete memoryless communication channel with input

X(t) ∈ {1, . . . , n} and output Y (t) ∈ {1, . . . ,m} for t = 1, 2, . . .. The relation

between the input and output is given by a transition matrix P ∈ Rm×n
+ with

Pij = Prob(Y (t) = i|X(t) = j), i = 1, . . . ,m, j = 1, . . . , n.

Assume thatX has a probability distribution denoted by x ∈ Rn, i.e., xj = Prob(X(t) =

j) for j = 1, . . . , n. A famous result by Shannon and Weaver (1949) states that the

channel capacity is found by maximizing the mutual information between X and Y ,

I(X, Y ) =
n∑
j=1

xj

m∑
i=1

Pij log2 Pij −
m∑
i=1

yi log2 yi,

where y = Px is the probability distribution of Y . Since I is concave, this is equivalent

to solving the convex optimization problem

maximize
x,y

∑n
j=1 xj

∑m
i=1 Pij logPij −

∑m
i=1 yi log yi

subject to x ≥ 0,
∑m

i=1 xi = 1, y = Px

for x ∈ Rn and y ∈ Rm. The associated code in CVXR is

R> x <- Variable(n)

R> y <- P %*% x

R> c <- apply(P * log2(P), 2, sum)
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R> obj <- t(c) %*% x + sum(entr(y))

R> constr <- list(sum(x) == 1, x >= 0)

R> prob <- Problem(Maximize(obj), constr)

R> result <- solve(prob)

The channel capacity is simply the optimal objective, result$value.

Fastest mixing Markov chain

This example is derived from the results in Boyd et al. (2004, Section 2). Let G =

(V , E) be a connected graph with vertices V = {1, . . . , n} and edges E ⊆ V × V .

Assume that (i, i) ∈ E for all i = 1, . . . , n, and (i, j) ∈ E implies (j, i) ∈ E . Under

these conditions, a discrete-time Markov chain on V will have the uniform distribution

as one of its equilibrium distributions. We are interested in finding the Markov

chain, i.e., constructing the transition probability matrix P ∈ Rn×n
+ , that minimizes

its asymptotic convergence rate to the uniform distribution. This is an important

problem in Markov chain Monte Carlo (MCMC) simulations, as it directly affects the

sampling efficiency of an algorithm.

The asymptotic rate of convergence is determined by the second largest eigenvalue

of P , which in our case is µ(P ) := σmax(P − 1
n
11>) where σmax(A) denotes the

maximum singular value of A. As µ(P ) decreases, the mixing rate increases and the

Markov chain converges faster to equilibrium. Thus, our optimization problem is

minimize
P

σmax(P − 1
n
11>)

subject to P ≥ 0, P1 = 1, P = P>

Pij = 0, (i, j) /∈ E .

The element Pij of our transition matrix is the probability of moving from state i

to state j. Our assumptions imply that P is non-negative, symmetric, and doubly

stochastic. The last constraint ensures transitions do not occur between unconnected

vertices.

The function σmax is convex, so this problem is solvable in CVXR. For instance,

the code for the Markov chain in Figure 4.9a is



CHAPTER 4. A DSL FOR CONVEX OPTIMIZATION 90

0.55

0.36

0.36

0.45

0.45

0.27

0.27 0.27

0.36
0.27

0.36

1

2

3

4

(a) Triangle + 1 edge.

0.14

0.43

0.14

0.43

0.43
0.29

0.29

0.29

0.29

0.29

0.29

0.29

0.29

0.29

0.29

0.29

0.29

1

2

3

4

5

(b) Bipartite 2 + 3.

Figure 4.9: Markov chains with transition probabilities that achieve the fastest mixing
rate.

R> P <- Variable(n, n)

R> ones <- matrix(1, nrow = n, ncol = 1)

R> obj <- sigma_max(P - 1/n)

R> constr1 <- list(P >= 0, P %*% ones == ones, P == t(P))

R> constr2 <- list(P[1, 3] == 0, P[1, 4] == 0)

R> prob <- Problem(Minimize(obj), c(constr1, constr2))

R> result <- solve(prob, solver = "SCS")

where we have set n = 4. We could also have specified P1 = 1 with sum entries(P,

1) == 1, which uses the sum entries atom to represent the row sums.

It is easy to extend this example to other Markov chains. To change the number

of vertices, we would simply modify n, and to add or remove edges, we need only

alter the constraints in constr2. For instance, the bipartite chain in Figure 4.9b is

produced by setting n = 5 and

R> constr2 <- list(P[1, 3] == 0, P[2, 4] == 0, P[2, 5] == 0, P[4, 5] == 0)



CHAPTER 4. A DSL FOR CONVEX OPTIMIZATION 91

Radiation therapy dose scheduling

This example is a simple variation on the adaptive radiation treatment planning

problem in Chapter 3. An oncology patient is given a dose of radiation dt ∈ R+ in

sessions t = 1, . . . , T − 1 with the goal of shrinking a tumor to some specified target

size, while minimizing the damage to the patient’s health. We must choose the doses

dt subject to the constraint dt ≤ dmax, where dmax is a constant.

Let St ∈ R+ denote the tumor size in session t. This evolves in response to the

radiation dose as

St+1 = αe−βdtSt, t = 1, . . . , T − 1,

where α > 1 is the per-session tumor growth rate without radiation and β > 0 is a

known constant. The initial tumor size S1 > 0 is given; by the end of treatment, we

wish to achieve ST ≤ Star, where Star is the target final tumor size.

Similarly, let Ht ∈ R+ denote some measure of the damage to the patient’s health

from radiation treatment. This evolves according to

Ht+1 = γeδdtHt, t = 1, . . . , T − 1,

where γ ∈ (0, 1] is the per-session damage recovery rate without radiation and δ > 0

is a known constant. We assume the initial damage H1 > 0 is given.

Our goal is to find a sequence of doses that satisfies the constraints described

above and minimizes the maximum damage across all sessions. By taking logs and

changing variables to S̃t = logSt and H̃t = logHt, we can pose the dose scheduling

problem as

minimize maxt=1,...,T H̃t

subject to S̃t+1 = S̃t − βdt + logα, t = 1, . . . , T − 1

H̃t+1 = H̃t + δdt + log γ, t = 1, . . . , T − 1

S̃1 = logS1, S̃T ≤ logStar

H̃1 = logH1, 0 � d � dmax

with respect to d = (d1, . . . , dT−1), S̃ = (S̃1, . . . , S̃T ), and H̃ = (H̃1, . . . , H̃T ). This
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problem is convex and hence can be solved using CVXR, as shown below.

R> d <- Variable(T_val-1, nonneg = TRUE)

R> S_l <- Variable(T_val)

R> H_l <- Variable(T_val)

R> obj <- max(H_l)

R> constr <- list()

R> for(t in seq_len(T_val-1)) {

+ constr <- c(constr, list(S_l[t+1] == S_l[t] - beta*d[t] + log(alpha),

+ H_l[t+1] == H_l[t] + delta*d[t] + log(gamma)))

+ }

R> constr <- c(constr, list(S_l[1] == log(S1),

+ S_l[T_val] <= log(S_tar), H_l[1] == log(H1), d <= d_max))

R> prob <- Problem(Minimize(obj), constr)

R> result <- solve(prob)

Figures 4.10 and 4.11 depict the solution of an instance with dmax = 1.2, α = 1.05, β =

0.6, γ = 0.9, δ = 0.3, S1 = 1, Star = 0.01, and H1 = 1.



CHAPTER 4. A DSL FOR CONVEX OPTIMIZATION 93

0.0

0.5

1.0

1.5

2.0

2.5

5 10 15 20
Session

Treated Untreated

(a) Tumor size.

0.5

1.0

1.5

2.0

5 10 15 20
Session

Treated Untreated

(b) Health damage.

Figure 4.11: (a) Tumor size and (b) patient health damage under the optimal dose
plan (red) and without any radiation treatment (blue).

4.4 Implementation

CVXR represents the atoms, variables, constraints, and other parts of an optimization

problem using S4 class objects. S4 enables us to overload standard mathematical

operations so CVXR combines seamlessly with native R code and other packages.

When an operation is invoked on a variable, a new object is created that represents the

corresponding expression tree with the operator as the root node and the arguments

as leaves. This tree grows automatically as more elements are added, allowing us to

encapsulate the structure of an objective function or constraint.

Once the user calls solve, DCP verification occurs. CVXR traverses the expres-

sion tree recursively, determining the sign and curvature of each sub-expression based

on the properties of its component atoms. If the problem is deemed compliant, it

is transformed into an equivalent cone program using graph implementations of con-

vex functions (Grant et al., 2006). Then, CVXR passes the problem’s description to

the CVXcanon C++ library (Miller et al., 2015), which generates data for the cone

program, and sends this data to the solver-specific R interface. The solver’s results

are returned to the user in a list. This object-oriented design and infrastructure were

largely borrowed from CVXPY.

CVXR interfaces with the open-source cone solvers ECOS (Domahidi et al., 2013)

and SCS (O’Donoghue et al., 2016) through their respective R packages. ECOS is
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an interior-point solver, which achieves high accuracy for small and medium-sized

problems, while SCS is a first-order solver that is capable of handling larger prob-

lems and semidefinite constraints. As noted by Domahidi et al. (2013, Section I.A),

first-order methods can be slow if the problem is not well conditioned or if it has a

feasible set that does not allow for an efficient projection, while interior-point methods

have a convergence rate that is independent of the problem data and the particular

feasible set. Furthermore, starting from version 0.99, CVXR also provides support

for the commercial solvers MOSEK (Andersen and Andersen, 2000) and GUROBI

(Gurobi Optimization, Inc, 2016) through binary R packages published by the re-

spective vendors. It is not difficult to connect additional solvers so long as the solver

has an API that can communicate with R. Users who wish to employ a custom solver

may obtain the canonicalized data for a problem and solver combination directly

with get problem data(problem, solver). When more than one solver is capable

of solving a problem, the solver argument to the solve function can be used to

indicate a preference. Available solvers, depending on installed packages in a ses-

sion, are returned via installed solvers(). Interested users should consult tutorial

examples on the web page https://cvxr.rbind.io for further guidance.

We have provided a large library of atoms, which should be sufficient to model

most convex optimization problems. However, it is possible for a sophisticated user

to incorporate new atoms into this library. The process entails creating a S4 class for

the atom, overloading methods that characterize its DCP properties, and representing

its graph implementation as a list of linear operators that specify the corresponding

feasibility problem. For instance, the absolute value function f(x) = |x| is represented

by the Abs class, which inherits from Atom. We defined its curvature by overloading

the S4 method is atom convex, used in the DCP verification step, to return TRUE

when called on an Abs object. Then, we derived the graph form of the absolute

value to be f(x) = inf{t| − t ≤ x ≤ t}. This form’s objective and constraints were

coded into lists in the atom’s graph implementation function. A full mathematical

exposition may be found in Grant et al. (2006, Section 10). In general, we suggest

users try to reformulate their optimization problem first before attempting to add a

novel atom.

https://cvxr.rbind.io
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4.4.1 Speed considerations

Usually, CVXR will be slower than a direct call to a solver, because in the latter case,

the user would have already done the job of translating a mathematical problem into

code and constraints ingestible by the solver. CVXR does this translation for the user

starting from a DCP formulation of the problem by walking the abstract syntax tree,

which represents the canonicalized objectives and constraints, and building appro-

priate matrix structures for the solver. The matrix data are passed to a compatible

solver using either Rcpp (Eddelbuettel and François, 2011) or calls to a solver-specific

R package. CVXR stores data in sparse matrices, thereby allowing large problems to

be specified. However, the restrictions imposed by R on sparse matrices (Bates and

Maechler, 2019) still apply: each dimension cannot exceed the integer limit of 231−1.

Currently, the canonicalization and construction of data in R for the solver dom-

inates computation time, particularly for complex expressions that involve indexing

into individual elements of a matrix or vector. Using available CVXR functions for

vectorized operations provides substantial speed improvements.

CVXR also provides a Parameter object that can be combined with warm starts,

if such an option is available in the solver. A Parameter is a constant expression

whose value can be modified after a Problem is created. This can yield significant

reductions in computation time when solving a family of parametrized problems. The

code below exploits warm starts to solve a lasso problem with two different values of

the penalization parameter λ.

R> beta <- Variable(n)

R> lambda <- Parameter(pos = TRUE)

R> obj <- 0.5 * sum((y - X %*% beta)^2) + lambda * p_norm(beta, 1)

R> constr <- list(beta >= 0)

R> prob <- Problem(Minimize(obj), constr)

R> value(lambda) <- 1 # First value of lambda

R> result <- solve(prob, solver = "OSQP")

R> value(lambda) <- 2 # Second value of lambda, warm start

R> result <- solve(prob, solver = "OSQP", warm_start = TRUE)
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On a commodity Macintosh laptop, with X ∈ R2000×500 and y ∈ R2000, the first

solution took 7.153 seconds, while the second took only 0.763 seconds.

4.5 Conclusion

Convex optimization plays an essential role in many fields, particularly machine learn-

ing and statistics. CVXR provides an object-oriented language with which users can

easily formulate, modify, and solve a broad range of convex optimization problems.

While other R packages may perform faster on a subset of these problems, CVXR’s

advantage is its flexibility and simple intuitive syntax, making it an ideal tool for pro-

totyping new models for which custom R code does not exist. For more information,

see the official web page of the package on the Comprehensive R Archive Network

(CRAN) at https://CRAN.R-project.org/package=CVXR and documentation.

https://CRAN.R-project.org/package=CVXR


Chapter 5

Conclusion

5.1 Summary

We have presented a unified optimization-based framework for adaptive radiation

treatment planning. Starting from a simple setting, we showed how to formulate

the treatment planning problem as a convex optimization problem, which is both

tractable and easy to solve. We then examined two potential sources of nonconvexity:

dose-volume constraints and nonlinear patient health dynamics.

In considering the first case, we limited our attention to the static setting. We

replaced each dose-volume constraint with a convex restriction based on the hinge

loss function. This restriction overestimates the number of voxels that violate the

clinician’s desired dose threshold. Therefore, to mitigate its impact on the overall

objective, we developed a two-pass algorithm that solves the restricted problem in

the first pass, then uses this solution to meet the dose-volume constraints exactly in

the second pass. We also introduced a slack refinement that ensures the first pass

is always feasible. We tested our algorithm on two clinical cases and showed that it

produces excellent treatment plans, which satisfy all dose-volume constraints when

possible. If this is impossible (i.e., the original problem is infeasible), it generates

plans that minimize the total dose violation while taking into account other clinical

goals. Our algorithm is implemented in the Python package, ConRad, along with a

simple interface for constructing, visualizing, and comparing treatment plans.

97
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We next turned our attention to the dynamic setting, where radiation is deliv-

ered across multiple treatment sessions. To model changes in the patient’s condition

between these sessions, we introduced a patient health status variable and health

dynamics function. We then formulated the adaptive radiation treatment planning

problem as an optimal control problem. In general, this problem is nonconvex because

the patient health dynamics are described by a highly nonlinear process. We focused

on the setting where the dynamics function is concave quadratic; this aligns with the

standard linear-quadratic model of cell response to radiation. We proposed a method

for obtaining a good proximate solution to the nonconvex optimal control problem by

solving a sequence of convex approximations using an operator splitting algorithm.

Our method is fast, robust, and highly scalable, handling cases that involve tens of

thousands of radiation beams with ease. We implemented our method in the Python

package, AdaRad, and demonstrated its performance on a large prostate cancer case.

Finally, in the last part of the dissertation, we moved beyond radiation therapy to

general convex optimization. We developed a domain-specific language for formulat-

ing and solving a large class of convex optimization problems, which include statistical

models like least-squares, ridge and lasso regression, Huber regression, and support

vector machines. We implemented our DSL in CVXR, an R package built upon an

object-oriented framework. CVXR allows users to express optimization problems in a

simple mathematical syntax. Then, using a system called disciplined convex program-

ming, it automatically verifies each problem’s convexity and transforms that problem

into the standard form required by a particular solver. We illustrated CVXR’s mod-

eling framework with a variety of examples from statistics, mechanics, engineering,

and radiation treatment planning.

5.2 Future work

This dissertation lays the groundwork for future research in optimization and radia-

tion therapy. In Chapters 2 and 3, we showed one way to handle nonconvex constraints

in the treatment planning problem by replacing them with a convex approximation.

A natural next step would be to combine the algorithms for dose-volume constraints
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and nonlinear health dynamics so that both can be handled simultaneously in the

adaptive setting. This could be achieved by modifying the sequential convex opti-

mization method as follows: in each iteration, we linearize the health dynamics func-

tion, then apply the two-pass algorithm to deal with the dose-volume constraints in

the linearized problem. More generally, if we have a convex surrogate for a nonconvex

planning constraint, such as a conformality requirement on the dose distribution, we

can use this hybrid approach to incorporate it into our adaptive treatment planning

framework.

An avenue that deserves deeper exploration is the patient health dynamics model.

In Chapter 3, we took the health status to be the cell survival rate according to the

linear-quadratic model, but this simple model ignores factors like resensitization and

repair of sublethal damage, which can be significant in certain tumors. Additionally,

we have assumed that the health status of each anatomical structure evolves indepen-

dently of the others, when this is rarely the case in reality. Accounting for these and

other highly nonlinear effects will require us to rethink our convexification approach.

Perhaps instead of forming a convex approximation, we can train a neural network

on past patient data as a black box predictor of the health status. This would allow

us to combine the best aspects of model-based optimization with model-free machine

learning to produce treatment plans that are both well-tailored and interpretable.

Looking beyond radiation therapy, we can extend our work on treatment planning

to other therapeutic agents. In practice, cancer is usually treated with a combination

of different therapies, such as surgery, radiation therapy, and chemotherapy, which

act synergistically to destroy diseased tissue more efficiently than a single mode of

therapy. To take advantage of this synergy, we must first develop a model that

captures the interactions between different modalities. Then, we can situate it in the

framework from Chapter 3 to produce a method for adaptive multi-modal treatment

planning. If successful, this method could open the door to more flexible, cross-

disciplinary cancer treatment schemes in the future.



Appendix A

CVXR Atoms and Operators

A.1 Expressions and functions

CVXR uses the function information in this section and the DCP tools to assign

expressions a sign and curvature. In what follows, the domain Sn refers to the set of

symmetric matrices, with Sn+ and Sn− referring to the set of positive semidefinite and

negative semidefinite matrices, respectively.

A.1.1 Operators

The infix operators +, -, *, %*%, / are treated as functions. Both + and - are affine

functions. In CVXR, * and / are affine because expr1 * expr2 and expr1 %*%

expr2 are allowed only when one of the expressions is constant and expr1 / expr2

is allowed only when expr2 is a scalar constant.

The transpose of any expression can be obtained using t(expr). Transpose is an

affine function. The construct expr^p is equivalent to the function power(expr, p).

A.1.2 Indexing and slicing

All non-scalar expressions can be indexed using expr[i, j]. Indexing is an affine

function. The syntax expr[i] can be used as a shorthand for expr[i, 1] when expr

100
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is a column vector. Similarly, expr[i] is shorthand for expr[1, i] when expr is a

row vector.

Non-scalar expressions can also be sliced using the standard R slicing syntax. For

example, expr[i:j, r] selects rows i through j of column r and returns a vector.

CVXR supports advanced indexing using lists of indices or boolean arrays. The

semantics are the same as in R. Any time R might return a numeric vector, CVXR

returns a column vector.

A.1.3 Scalar functions

CVXR provides the scalar functions displayed in Tables A.1 and A.2, which take in

one or more scalars, vectors, or matrices as arguments and return a scalar.

For a vector expression x, cvxr norm(x) and cvxr norm(x, 2) give the Euclidean

norm. For a matrix expression X, however, cvxr norm(X) and cvxr norm(X, 2) give

the spectral norm. The function cvxr norm(X, \fro") gives the Frobenius norm

and cvxr norm(X, \nuc") the nuclear norm. The nuclear norm can also be defined

as the sum of the singular values of X.

The functions max entries and min entries give the largest and smallest entry,

respectively, in a single expression. These functions should not be confused with

max elemwise and min elemwise (see Section A.1.4). The functions max elemwise

and min elemwise return the maximum or minimum of a list of scalar expressions.

The function sum entries sums all the entries in a single expression. The built-in

R sum should be used to add together a list of expressions. For example, the following

code sums three expressions.

R> sum(expr1, expr2, expr3)

Some functions such as sum entries, cvxr norm, max entries, and min entries can

be applied along an axis. Given an m by n expression expr, the line func(expr, axis

= 1) applies func to each row, returning an m by 1 expression. The line func(expr,

axis = 2) applies func to each column, returning a 1 by n expression. For example,

the following code sums along the columns and rows of a matrix variable:
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R> X <- Variable(5, 4)

R> row_sums <- sum_entries(X, axis = 1) # Has size (5, 1)

R> col_sums <- sum_entries(X, axis = 2) # Has size (1, 4)

CVXR ensures the implementation aligns with the base::apply function. The de-

fault in most cases is axis = NA, which treats an input matrix as one long vec-

tor, basically the same as base::apply with MARGIN = c(1, 2). The exception is

cumsum axis (see Table A.3), which cannot take axis = NA and will throw an error.

A.1.4 Elementwise functions

These functions operate on each element of their arguments and are displayed in

Table A.3. For example, if X is a 5 by 4 matrix variable, then abs(X) is a 5 by 4

matrix expression. Also, abs(X)[1, 2] is equivalent to abs(X[1, 2]).

Elementwise functions that take multiple arguments, e.g., max elemwise and

multiply, operate on the corresponding elements of each argument. For instance, if

X and Y are both 3 by 3 matrix variables, then max elemwise(X, Y) is a 3 by 3 matrix

expression, where max elemwise(X, Y)[2, 1] is equivalent to max elemwise(X[2,

1], Y[2, 1]). Thus all arguments must have the same dimensions or be scalars,

which are promoted appropriately.

A.1.5 Vector and matrix functions

These functions, shown in Table A.4, take one or more scalars, vectors, or matrices

as arguments and return a vector or matrix.

The input to bmat is a list of lists of CVXR expressions. It constructs a block

matrix. The elements of each inner list are stacked horizontally, and then the resulting

block matrices are stacked vertically.

The output of vec(X) is the matrix X flattened in column-major order into a

vector.

The output of reshape expr(X, c(m1, n1)) is the matrix X cast into an m1 by

n1 matrix. The entries are taken from X in column-major order and stored in the

output in column-major order.
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