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Prox-Affine Form

Prox-affine convex optimization problem:

minimize
∑N

i=1 fi (xi )
subject to

∑N
i=1 Ai xi = b

with variables xi ∈ Rni for i = 1, . . . ,N

I Ai ∈ Rm×ni and b ∈ Rm given data
I fi : Rni → R ∪ {+∞} are closed, convex and proper
I Each fi can only be accessed via its proximal operator

proxtfi (vi ) = argminxi

{
fi (xi ) + 1

2t ‖xi − vi‖22
}
,

where t > 0 is a parameter
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Why This Formulation?

I Encompasses many classes of convex problems (conic
programs, consensus optimization)

I Block separable form ideal for distributed optimization
I Proximal operator can be provided as a “black box”, enabling

privacy-preserving implementation
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Previous Work

I Alternating direction method of multipliers (ADMM)
I Douglas-Rachford splitting (DRS)
I Augmented Lagrangian method (ALM)

These are typically slow to converge, prompting research into
acceleration techniques:

I Adaptive penalty parameters
I Momentum methods
I Quasi-Newton method with line search
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Our Method

I A2DR: Anderson acceleration (AA) applied to DRS
I DRS is a non-expansive fixed-point (NEFP) method that fits

prox-affine framework
I AA is fast, efficient, and can be applied to NEFP iterations –

but unstable without modification
I We introduce a type-II AA variant that converges globally in

non-smooth, potentially pathological settings
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Main Advantages

I A2DR produces primal and dual solutions, or a certificate of
infeasibility/unboundedness

I Consistently converges faster with no parameter tuning
I Memory efficient ⇒ little extra cost per iteration
I Scales to large problems and is easily parallelized
I Python implementation:

https://github.com/cvxgrp/a2dr
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DRS Algorithm

I Rewrite problem as

minimize
∑N

i=1 fi (xi ) + IAx=b(x),

where IS is the indicator of set S
I DRS iterates for k = 1, 2, . . .,

xk+1/2
i = proxtfi (vk), i = 1, . . . ,N

vk+1/2 = 2xk+1/2 − vk

xk+1 = ΠAv=b(vk+1/2)
vk+1 = vk + xk+1 − xk+1/2

ΠS(v) is Euclidean projection of v onto S
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Convergence of DRS

I DRS iterations can be conceived as a fixed-point mapping

vk+1 = F (vk),

where F is firmly non-expansive
I vk converges to a fixed point of F (if it exists)
I xk and xk+1/2 converge to a solution of our problem

In practice, this convergence is often slow...
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Type-II AA

I Quasi-Newton method for accelerating fixed point iterations
I Extrapolates next iterate using M + 1 most recent iterates

vk+1 =
M∑

j=0
αk

j F (vk−M+j)

I Let G(v) = v − F (v), then αk ∈ RM+1 is solution to

minimize ‖
∑M

j=0 α
k
j G(vk−M+j)‖22

subject to
∑M

j=0 α
k
j = 1

I Typically only need M ≈ 10 for good performance

Anderson Acceleration 13



Adaptive Regularization

I Type-II AA is unstable so we add a regularization term
I Change variables to γk ∈ RM

αk
0 = γk

0 , αk
i = γk

i −γk
i−1 ∀i = 1, . . . ,M−1, αk

M = 1−γk
M−1

I Stabilized AA problem is

minimize ‖gk − Ykγ
k‖22 + η

(
‖Sk‖2F + ‖Yk‖2F

)
‖γk‖22,

where η ≥ 0 is a parameter and

gk = G(vk), yk = gk+1 − gk , Yk = [yk−M . . . yk−1]
sk = vk+1 − vk , Sk = [sk−M . . . sk−1]
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A2DR

I Let α = H(v , g) be the weights produced by stabilized AA
I A2DR iterates for k = 1, 2, . . .,

vk+1
DRS = F (vk), gk = vk − vk+1

DRS

αk = H(vk , gk)

vk+1
AA =

M∑
j=0

αk
j vk−M+j+1

DRS

vk+1 =
{

vk+1
AA safeguard passes

vk+1
DRS safeguard fails
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Stopping Criterion of A2DR

I Stop and output xk+1/2 when ‖rk‖2 ≤ εtol

rk
prim = Axk+1/2 − b

rk
dual = 1

t (vk − xk+1/2) + ATλk

I Dual variable is solution to least-squares problem

λk = argmin ‖rk
dual‖2
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Convergence of A2DR

Theorem (Solvable Case)
If the problem is feasible and bounded,

lim inf
k→∞

‖rk‖2 = 0

and the AA candidates are adopted infinitely often. Furthermore, if
F has a fixed point v?,

lim
k→∞

vk = v? and lim
k→∞

xk+1/2 = x?,

where x? is a solution to the problem.
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Convergence of A2DR

Theorem (Pathological Case)
If the problem is pathological,

lim
k→∞

(
vk − vk+1

)
= δv 6= 0.

Furthermore, if limk→∞ Axk+1/2 = b, the problem is unbounded.
Otherwise, it is infeasible.
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Preconditioning

I Convergence greatly improved by rescaling problem
I Replace original A, b, fi with

Â = DAE , b̂ = Db, f̂i (x̂i ) = fi (ei x̂i )

I D and E are diagonal positive, ei > 0 corresponds to ith block
diagonal entry of E

I D and E chosen by equilibrating A (see paper for details)
I Proximal operator of f̂i can be evaluated using proximal

operator of fi

proxtf̂i (v̂i ) = 1
ei

prox(e2
i t)fi (ei v̂i )

Anderson Acceleration 19



Outline

Problem Overview

Douglas-Rachford Splitting

Anderson Acceleration

Numerical Experiments

Conclusion

Numerical Experiments 20



Nonnegative Least Squares (NNLS)

minimize ‖Fz − g‖22
subject to z ≥ 0

with respect to z ∈ Rq

I Problem data: F ∈ Rp×q and g ∈ Rp

I Can be written in standard form with

f1(x1) = ‖Fx1 − g‖22, f2(x2) = IRn
+

(x2)
A1 = I, A2 = −I, b = 0

I We evaluate proximal operator of f1 using LSQR
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NNLS: Convergence of ‖r k‖2

p = 104, q = 8000, F has 0.1% nonzeros
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NNLS: Convergence of ‖r k‖2

p = 300, q = 500, F has 0.1% nonzeros
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Sparse Inverse Covariance Estimation

I Samples z1, . . . , zp IID from N (0,Σ)
I Know covariance Σ ∈ Sq

+ has sparse inverse S = Σ−1

I One way to estimate S is by solving the penalized
log-likelihood problem

minimize − log det(S) + tr(SQ) + α‖S‖1,

where Q is the sample covariance, α ≥ 0 is a parameter
I Note log det(S) = −∞ when S � 0
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Sparse Inverse Covariance Estimation

I Problem can be written in standard form with

f1(S1) = − log det(S1) + tr(S1Q), f2(S2) = α‖S2‖1
A1 = I, A2 = −I, b = 0

I Both proximal operators have closed-form solutions (Parikh &
Boyd 2014)
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Covariance Estimation: Convergence of ‖r k‖2

p = 1000, q = 100, S has 10% nonzeros
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Multi-Task Logistic Regression

minimize φ(W θ,Y ) + α
∑L

l=1 ‖θl‖2 + β‖θ‖∗

with respect to θ = [θ1 · · · θL] ∈ Rs×L

I Problem data: W ∈ Rp×s and Y = [y1 · · · yL] ∈ Rp×L

I Regularization parameters: α ≥ 0, β ≥ 0
I Logistic loss function

φ(Z ,Y ) =
L∑

l=1

p∑
i=1

log (1 + exp(−Yil Zil ))
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Multi-Task Logistic Regression

I Rewrite problem in standard form with

f1(Z ) = φ(Z ,Y ), f2(θ) = α
L∑

l=1
‖θl‖2, f3(θ̃) = β‖θ̃‖∗,

A =
[

I −W 0
0 I −I

]
, x =

 Z
θ

θ̃

 , b = 0

I We evaluate proximal operator of f1 using Newton-CG
method, rest have closed-form solutions
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Multi-Task Logistic: Convergence of ‖r k‖2

p = 300, s = 500, L = 10, α = β = 0.1
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Conclusion

I A2DR is a fast, robust algorithm for solving linearly
constrained convex optimization problems

I Can be easily scaled up and parallelized
I Open-source Python solver:

https://github.com/cvxgrp/a2dr
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Future Work

I More work on feasibility detection
I Expand library of proximal operators
I User-friendly interface with CVXPY
I GPU parallelization and cloud computing
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