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Prox-Affine Optimization Problem

Consider the prox-affine form of a convex optimization problem:

minimize Zf\lzl fi(xi)
subject to Zf\lzl Aixi=b

with variables x; € R" for i =1,..., N.
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Prox-Affine Optimization Problem

Consider the prox-affine form of a convex optimization problem:

minimize Zf\lzl fi(xi)
subject to Zf\lzl Aixi=b

with variables x; € R" for i =1,..., N.
@ A; € R™" and b € R™ are given data.
o fi: R" — RU {+o00} are closed, convex and proper (CCP).

@ Each f; can only be accessed via its proximal operator
_ : 1 2
prox.(v;) = argmin,  (fi(x;) + l1x — vill3) ,

where t > 0 is a parameter.
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Prox-Affine Optimization Problem

Why prox-affine form?

minimize Efvzl fi(xi)
subject to Z,N:l Aix; = b.
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Prox-Affine Optimization Problem

Why prox-affine form?
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@ Generic Formulation: encompasses many classes of convex problems
(cone programs, consensus optimization, etc).
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Prox-Affine Optimization Problem

Why prox-affine form?
minimize E,Nzl fi(xi)

subject to Z,NII Aix; = b.

@ Generic Formulation: encompasses many classes of convex problems
(cone programs, consensus optimization, etc).

e Block Separable: ideal for parallel/distributed implementation.
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Prox-Affine Optimization Problem

Why prox-affine form?

minimize E,N:l fi(xi)
subject to Z,NII Aix; = b.

@ Generic Formulation: encompasses many classes of convex problems
(cone programs, consensus optimization, etc).

e Block Separable: ideal for parallel/distributed implementation.

o Black Box Proximal Operator: preserves privacy in peer-to-peer
optimization settings.
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@ Common methods for distributed optimization:

o Alternating direction method of multipliers (ADMM).
o Douglas-Rachford splitting (DRS).
o Augmented Lagrangian method (ALM).
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@ Common methods for distributed optimization:

o Alternating direction method of multipliers (ADMM).
o Douglas-Rachford splitting (DRS).
o Augmented Lagrangian method (ALM).

@ These are typically slow to converge, so researchers employ
acceleration techniques:
o Adaptive penalty parameters.
o Momentum methods.
o Quasi-Newton/Newton-type method with line search.
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Our Method

A2DR: Anderson acceleration (AA) applied to DRS.

o First type-ll AA variant that converges globally in non-smooth,
potentially pathological settings.

Produces primal and dual solutions, or a certificate of
infeasibility /unboundedness.

Consistently converges faster with no parameter tuning.

Memory efficient = little extra cost per iteration.

@ Scales to large problems and is easily parallelized.
@ Available as an open-source Python solver:

https://github.com/cvxgrp/a2dr
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© Douglas-Rachford Splitting
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DRS Algorithm

@ Rewrite problem using Zs as indicator of set S:

,JL g(x)
minimize Z fi(xi) + Zax=b(x),

where A=[A; ... Ay] and x = (x1,...,xn).
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DRS Algorithm

@ Rewrite problem using Zs as indicator of set S:

,JL g(x)
minimize Z fi(xi) + Zax=b(x),

where A=[A; ... Ay] and x = (x1,...,xn).
o DRS iterates for k =1,2,...,

k+1/2 k -
X; =prox,.(v*), i=1,...,N

JKHL/2 oy k41/2 K
k+1 k+1/2
XK = M, p(VFH1/?)

VAL kg kL k12,

Ms(v) is Euclidean projection of v onto S.
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Convergence of DRS

DRS iterations can be conceived as a fixed point (FP) mapping
v = F(vR).

@ F is firmly non-expansive.

o vk converges to a fixed point of F (if it exists).

o x¥ and xk*1/2 converge to a solution of our problem.
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Convergence of DRS

DRS iterations can be conceived as a fixed point (FP) mapping
v = F(vR).

@ F is firmly non-expansive.
o vk converges to a fixed point of F (if it exists).

o x¥ and xk*1/2 converge to a solution of our problem.

In practice, this convergence is often rather slow.
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© Anderson Acceleration & A2DR
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Type-lI AA

@ Quasi-Newton method for accelerating fixed point iterations.

o Extrapolates next iterate using M + 1 most recent iterates
M
vitl = ZafF(vk_Mﬂ).
j=0

o Let G(v) = v — F(v), then o € RM*1 is solution to

minimize HZA:/'.\ioon’-‘G(Vk*MJ”')H%
subject to > ;Zjaf = 1.

o Typically only need M = 10 for good performance.
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Adaptive Regularization

e Type-ll AA is unstable (Scieur et al, 2016) and can provably diverge
(Mai & Johansson 2019).

@ Add adaptive regularization term to unconstrained formulation.

EURO 2021 (Stanford University) July 13, 2021 13/34



Adaptive Regularization

e Type-ll AA is unstable (Scieur et al, 2016) and can provably diverge
(Mai & Johansson 2019).

@ Add adaptive regularization term to unconstrained formulation.

o Change variables to v € RM and define

K K K k .k g k K
@y = 70> QIZFYI'_’YI—IVI:]'?"'?M_]" aM:l_FYM_l'

EURO 2021 (Stanford University) July 13, 2021 13/34



Adaptive Regularization

o Type-ll AA is unstable (Scieur et al, 2016) and can provably diverge
(Mai & Johansson 2019).

@ Add adaptive regularization term to unconstrained formulation.

@ Change variables to v¥ € RM and define
ag =16, of =Af - Vi=1,... ,M=1, aly=1-7_,
@ Unconstrained AA problem:
minimize [|g% — Yy X3,

where we define

gk — G(Vk), yk — gk+1 _ gk’ Yk — [yk—M o yk—l]'
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Adaptive Regularization

o Type-ll AA is unstable (Scieur et al, 2016) and can provably diverge
(Mai & Johansson 2019).

@ Add adaptive regularization term to unconstrained formulation.

@ Change variables to v¥ € RM and define

aéz’yé‘, al-‘:fyf‘—*y,k_l Vi=1,...,M—1, aﬁ/,:l—fy,/\‘ﬂ_l.

1

@ Stabilized AA problem with quadratic regularization:
minimize [|g* — Yiey* |13 +n (ISl + I Yill7) (17513,
where 7 > 0 is a parameter and

gk — G(Vk), yk — gk+1 _ gk’ Yk — [yk—M o yk—l] ,

k k+1 k Sk — [Skfl\/l o Skfl]‘
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JAVAB] ¢

o Let € > 0, M positive integer.
@ A2DR iterates for k =1,2,.. .,

1. Compute vkl = F(vK), gk = vk - vEEL

2. Solve stabilized AA problem for v¥ = calculate o*.

M
3. Compute VK—AH = ajl-‘végéwrjﬂ.
Jj=0
4. Safeguard: If residual ||G(v¥)||2 = O(1/n3ke), adopt
vit = VKXI fori=1,..., M,
where nap = # of adopted AA candidates.
Otherwise, take vA™ = vA£L.

(This step ensures convergence in pathological cases).

EURO 2021 (Stanford University) July 13, 2021 14 /34



Stopping Criterion of A2DR

@ Stop and output x¥*1/2 when ||r¥||2 < €

k _ k+1/2
Forim = Axk+1/2 _ b,
k __ 1/ k k+1/2 Tk
fgual = £ (v —x )+ ATAK,
k _ (,k k
r _(rprimvrdual)‘

@ Dual variable is minimizer of dual residual norm
k - 1/, k k+1/2 T
AR = argmin,, [|2(vk — xkF12) 1 AT A,

which we obtain by solving a simple least-squares problem.
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Stopping Criterion of A2DR

@ Stop and output x¥*1/2 when ||r¥||2 < €

k _ k+1/2
Forim = Axk+1/2 _ b,
k __ 1/ k k+1/2 Tk
fgual = £ (v —x )+ ATAK,
k _ (,k k
r _(rprimvrdual)‘

@ Dual variable is minimizer of dual residual norm
k - 1/, k k+1/2 T
AR = argmin,, [|2(vk — xkF12) 1 AT A,

which we obtain by solving a simple least-squares problem.

@ Notice we get a proximal point %(vk — xk+1/2) c af(xk+1/2)_
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Convergence of A2DR: Theorems

Theorem (Solvable Case)
If the problem is solvable (e.g., feasible and bounded), then

liminf ||r¥[2 = 0
k—ro0

and the AA candidates are adopted infinitely often. Furthermore, if F has
a fixed point, then

lim vk = v* and lim xKT1/2 = x*

k—o0 k—o0 ’

where v* is a fixed-point of F and x* is a solution to our problem.

EURO 2021 (Stanford University) A2DR July 13, 2021 16 /34



Convergence of A2DR: Theorems

Theorem (Pathological Case)

If the problem is pathological (strongly primal infeasible or strongly dual
infeasible), then

lim (vk - vk+1> = dv #£0.
k—o00

Furthermore, if limy_soo AxKt1/2 = b, then the problem is unbounded and
|6v|2 = tdist(dom *, range(AT)). Otherwise, it is infeasible and

||ov]|2 > dist(dom f,{x : Ax = b}) with equality when the dual problem
is feasible.
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@ Implementation
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Preconditioning

Convergence greatly improved by rescaling problem.

@ Replace original A, b, f; with

~ ~ ~

A=DAE, b=Db, F(%)=fi(ef).

D and E are diagonal positive (e; > 0 corresponds to ith block
diagonal entry of E) and chosen by equilibrating A.

@ Proximal operator of f: can be evaluated using proximal operator of f;

prox,z(V;) = eliprox(eizt)ﬁ(e,-\?,-).

Stopping criterion checked on rescaled problem.
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a2dr Solver Interface

result = a2dr(p_list, A_list, Db)

Input arguments:

@ p_list is list of function handles for prox,.(v;), e.g.,
fi(xi) = x; = p_list[i] = lambda v,t: v - t

@ A_list is list of matrices A;, b is vector b.
Output dictionary keys:

@ solve_time is total runtime.

@ num_iters is total number of iterations K.

e x_vals is list of final values xX.
k
rprim

@ primal and dual are vectors of and ré‘ual fork=1,..., K.
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e Numerical Experiments
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Nonnegative Least Squares (NNLS)

minimize  ||Fz — g||3
subjectto z>0

with respect to z € R9.
@ Problem data: F € RP*9 and g € RP.

@ Can be written in prox-affine form with

A(a) = [1Fa —gll5,  f(x) =Ir (x2),
Al=1 Ay=—I, b=0.

@ We evaluate the proximal operator of fi using LSQR.
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NNLS: Convergence of ||r¥||,

p = 10% g = 8000, F has 0.1% nonzeros

—— Residuals (DRS)
10! A —— Residuals (A2DR)
1071
1073 4
1075 4
1077

0 200 400 600 800 1000

A2DR took only 55 seconds, while OSQP and SCS took respectively 349
and 327 seconds.
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NNLS: Effect of Regularization on ||r¥|»

p = 300, g =500, F has 0.1% nonzeros

—— Residuals (no-reg)
10* —— Residuals (constant-reg)
—— Residuals (ada-reg)
10—1 4
10—3 4
10—5 4
1077 T

0 200 400 600 800 1000
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Sparse Inverse Covariance Estimation

e Samples z1,...,2, IID from N (0, X).
@ Know covariance ¥ € Si has sparse inverse S = ¥ 1.

@ One way to estimate S is by solving the penalized log-likelihood
problem

minimize —logdet(S) +tr(SQ) +a ) ; ;Sjl,

where @ is the sample covariance, « > 0 is a parameter.
o Note logdet(S) = —oo when S 3 0.
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Sparse Inverse Covariance Estimation

@ Problem can be written in prox-affine form with
fi(S1) = —logdet($1) + tr($1Q),  £H(S2) =a > _|(S2)il;
ij
Ai=1, A =-I, b=0.

@ Both proximal operators have closed-form solutions.
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Covariance Estimation: Convergence of ||r]|»

p = 1000, g = 100, S has 10% nonzeros

—— Residuals (DRS)
10" A —— Residuals (A2DR)
10—1 .
10—3 .
10—5 .
10_7 T T T T T T
0 200 400 600 800 1000
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Covariance Estimation: Larger Examples

Compared performance between A2DR and SCS on large S with
vectorizations of O(10°).

@ g = 1200: A2DR took 1 hour to converge to a tolerance of 1073,
while SCS took 11 hours to achieve a tolerance of 10~! and yielded a
much worse objective value.

@ g = 2000: A2DR converged in 2.6 hours to a tolerance of 1073, while
SCS failed immediately with an out-of-memory error.
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Multi- Task Logistic Regression

minimize  ¢(W8,Y) +a Sk 16ill2 + B/0]|«

with respect to 6 = [0; - - - 6;] € R*¥E.
o Problem data: W € RP** and Y = [y; ---y/] € RP*L.
@ Regularization parameters: a > 0,3 > 0.

o Logistic loss function

L p
o(Z,Y) = log (1 +exp(=YiZi)).
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Multi- Task Logistic Regression

@ Rewrite problem in prox-affine form with

A(Z2) =¢(Z,Y), h(0 —aZHelnz, f2(6) = 861l

V4
A: I _W 0 ) X = 6 ) b:0
o I -l F

@ We evaluate the proximal operator of f; using the Newton-CG
method, and the rest with closed-form formulae.
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Multi-Task Logistic: Convergence of ||r¥||

p=300,s=500 L=10, a=4=0.1

—— Residuals (DRS)
10" A —— Residuals (A2DR)
10—1 .
10-3 .
10—5 .
10_7 T T T T T T
0 200 400 600 800 1000
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Other Examples

A2DR can be applied to many other problems (see paper for details):
o [ trend filtering.
o Stratified models.

@ Single commodity flow optimization.

Optimal control.

Coupled quadratic program.
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Conclusion

@ A2DR is a fast, robust algorithm for solving generic convex
optimization problems in prox-affine form.

@ Highly scalable, parallelizable, and memory-efficient.
o Consistently fast convergence with no parameter tuning.

@ Produces primal and dual solutions, or a certificate of
infeasibility /unboundedness.

@ Open-source Python library:
https://github.com/cvxgrp/a2dr
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