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Prox-Affine Optimization Problem

Consider the prox-affine form of a convex optimization problem:

minimize
∑N

i=1 fi (xi )

subject to
∑N

i=1 Aixi = b

with variables xi ∈ Rni for i = 1, . . . ,N.

Ai ∈ Rm×ni and b ∈ Rm are given data.

fi : Rni → R ∪ {+∞} are closed, convex and proper (CCP).

Each fi can only be accessed via its proximal operator

proxtfi (vi ) = argminxi
(
fi (xi ) + 1

2t ‖xi − vi‖22
)
,

where t > 0 is a parameter.
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Prox-Affine Optimization Problem

Why prox-affine form?

minimize
∑N

i=1 fi (xi )

subject to
∑N

i=1 Aixi = b.

Generic Formulation: encompasses many classes of convex problems

(cone programs, consensus optimization, etc).

Block Separable: ideal for parallel/distributed implementation.

Black Box Proximal Operator: preserves privacy in peer-to-peer

optimization settings.
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Previous Work

Common methods for distributed optimization:

Alternating direction method of multipliers (ADMM).
Douglas-Rachford splitting (DRS).
Augmented Lagrangian method (ALM).

These are typically slow to converge, so researchers employ
acceleration techniques:

Adaptive penalty parameters.
Momentum methods.
Quasi-Newton/Newton-type method with line search.
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Our Method

A2DR: Anderson acceleration (AA) applied to DRS.

First type-II AA variant that converges globally in non-smooth,

potentially pathological settings.

Produces primal and dual solutions, or a certificate of

infeasibility/unboundedness.

Consistently converges faster with no parameter tuning.

Memory efficient ⇒ little extra cost per iteration.

Scales to large problems and is easily parallelized.

Available as an open-source Python solver:

https://github.com/cvxgrp/a2dr

EURO 2021 (Stanford University) A2DR July 13, 2021 7 / 34

https://github.com/cvxgrp/a2dr


1 Problem Overview

2 Douglas-Rachford Splitting

3 Anderson Acceleration & A2DR

4 Implementation

5 Numerical Experiments

6 Conclusion

EURO 2021 (Stanford University) A2DR July 13, 2021 8 / 34



DRS Algorithm

Rewrite problem using IS as indicator of set S :

minimize

f (x)︷ ︸︸ ︷∑N

i=1
fi (xi ) +

g(x)︷ ︸︸ ︷
IAx=b(x),

where A = [A1 . . . An] and x = (x1, . . . , xN).

DRS iterates for k = 1, 2, . . .,

x
k+1/2
i = proxtfi (v

k), i = 1, . . . ,N

vk+1/2 = 2xk+1/2 − vk

xk+1 = ΠAv=b(vk+1/2)

vk+1 = vk + xk+1 − xk+1/2.

ΠS(v) is Euclidean projection of v onto S .
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Convergence of DRS

DRS iterations can be conceived as a fixed point (FP) mapping

vk+1 = F (vk).

F is firmly non-expansive.

vk converges to a fixed point of F (if it exists).

xk and xk+1/2 converge to a solution of our problem.

In practice, this convergence is often rather slow.
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Type-II AA

Quasi-Newton method for accelerating fixed point iterations.

Extrapolates next iterate using M + 1 most recent iterates

vk+1 =
M∑
j=0

αk
j F (vk−M+j).

Let G (v) = v − F (v), then αk ∈ RM+1 is solution to

minimize ‖
∑M

j=0 α
k
j G (vk−M+j)‖22

subject to
∑M

j=0 α
k
j = 1.

Typically only need M ≈ 10 for good performance.
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Adaptive Regularization

Type-II AA is unstable (Scieur et al, 2016) and can provably diverge

(Mai & Johansson 2019).

Add adaptive regularization term to unconstrained formulation.

Change variables to γk ∈ RM and define

αk
0 = γk0 , αk

i = γki − γki−1 ∀i = 1, . . . ,M − 1, αk
M = 1− γkM−1.

gk = G (vk), yk = gk+1 − gk , Yk = [yk−M . . . yk−1].,

sk = vk+1 − vk , Sk = [sk−M . . . sk−1].
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A2DR

Let ε > 0, M positive integer.

A2DR iterates for k = 1, 2, . . .,

1. Compute vk+1
DRS = F (vk), gk = vk − vk+1

DRS .

2. Solve stabilized AA problem for γk ⇒ calculate αk .

3. Compute vk+1
AA =

M∑
j=0

αk
j v

k−M+j+1
DRS .

4. Safeguard: If residual ‖G (vk)‖2 = O(1/n1+εAA ), adopt

vk+i = vk+i
AA for i = 1, . . . ,M,

where nAA = # of adopted AA candidates.

Otherwise, take vk+1 = vk+1
DRS .

(This step ensures convergence in pathological cases).
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Stopping Criterion of A2DR

Stop and output xk+1/2 when ‖rk‖2 ≤ εtol:

rkprim = Axk+1/2 − b,

rkdual = 1
t (vk − xk+1/2) + ATλk ,

rk = (rkprim, r
k
dual).

Dual variable is minimizer of dual residual norm

λk = argminλ ‖1t (vk − xk+1/2) + ATλ‖2,

which we obtain by solving a simple least-squares problem.

Notice we get a proximal point 1
t (vk − xk+1/2) ∈ ∂f (xk+1/2).
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Convergence of A2DR: Theorems

Theorem (Solvable Case)

If the problem is solvable (e.g., feasible and bounded), then

lim inf
k→∞

‖rk‖2 = 0

and the AA candidates are adopted infinitely often. Furthermore, if F has

a fixed point, then

lim
k→∞

vk = v? and lim
k→∞

xk+1/2 = x?,

where v? is a fixed-point of F and x? is a solution to our problem.
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Convergence of A2DR: Theorems

Theorem (Pathological Case)

If the problem is pathological (strongly primal infeasible or strongly dual

infeasible), then

lim
k→∞

(
vk − vk+1

)
= δv 6= 0.

Furthermore, if limk→∞ Axk+1/2 = b, then the problem is unbounded and

‖δv‖2 = t dist(dom f ∗, range(AT )). Otherwise, it is infeasible and

‖δv‖2 ≥ dist(dom f , {x : Ax = b}) with equality when the dual problem

is feasible.
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Preconditioning

Convergence greatly improved by rescaling problem.

Replace original A, b, fi with

Â = DAE , b̂ = Db, f̂i (x̂i ) = fi (ei x̂i ).

D and E are diagonal positive (ei > 0 corresponds to ith block

diagonal entry of E ) and chosen by equilibrating A.

Proximal operator of f̂i can be evaluated using proximal operator of fi

proxtf̂i (v̂i ) = 1
ei

prox(e2i t)fi
(ei v̂i ).

Stopping criterion checked on rescaled problem.
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a2dr Solver Interface

result = a2dr(p_list, A_list, b)

Input arguments:

p_list is list of function handles for proxtfi (vi ), e.g.,

fi (xi ) = xi ⇒ p_list[i] = lambda v,t: v - t

A_list is list of matrices Ai , b is vector b.

Output dictionary keys:

solve_time is total runtime.

num_iters is total number of iterations K .

x_vals is list of final values xKi .

primal and dual are vectors of rkprim and rkdual for k = 1, . . . ,K .
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Nonnegative Least Squares (NNLS)

minimize ‖Fz − g‖22
subject to z ≥ 0

with respect to z ∈ Rq.

Problem data: F ∈ Rp×q and g ∈ Rp.

Can be written in prox-affine form with

f1(x1) = ‖Fx1 − g‖22, f2(x2) = IRn
+

(x2),

A1 = I , A2 = −I , b = 0.

We evaluate the proximal operator of f1 using LSQR.
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NNLS: Convergence of ‖r k‖2

p = 104, q = 8000, F has 0.1% nonzeros

0 200 400 600 800 1000
10 7

10 5

10 3

10 1

101
Residuals (DRS)
Residuals (A2DR)

A2DR took only 55 seconds, while OSQP and SCS took respectively 349

and 327 seconds.
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NNLS: Effect of Regularization on ‖r k‖2

p = 300, q = 500, F has 0.1% nonzeros

0 200 400 600 800 1000
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101
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Sparse Inverse Covariance Estimation

Samples z1, . . . , zp IID from N (0,Σ).

Know covariance Σ ∈ Sq
+ has sparse inverse S = Σ−1.

One way to estimate S is by solving the penalized log-likelihood

problem

minimize − log det(S) + tr(SQ) + α
∑

i ,j |Sij |,

where Q is the sample covariance, α ≥ 0 is a parameter.

Note log det(S) = −∞ when S � 0.
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Sparse Inverse Covariance Estimation

Problem can be written in prox-affine form with

f1(S1) = − log det(S1) + tr(S1Q), f2(S2) = α
∑
i ,j

|(S2)ij |,

A1 = I , A2 = −I , b = 0.

Both proximal operators have closed-form solutions.
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Covariance Estimation: Convergence of ‖r k‖2

p = 1000, q = 100, S has 10% nonzeros

0 200 400 600 800 1000
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101
Residuals (DRS)
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Covariance Estimation: Larger Examples

Compared performance between A2DR and SCS on large S with

vectorizations of O(106).

q = 1200: A2DR took 1 hour to converge to a tolerance of 10−3,

while SCS took 11 hours to achieve a tolerance of 10−1 and yielded a

much worse objective value.

q = 2000: A2DR converged in 2.6 hours to a tolerance of 10−3, while

SCS failed immediately with an out-of-memory error.
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Multi-Task Logistic Regression

minimize φ(W θ,Y ) + α
∑L

l=1 ‖θl‖2 + β‖θ‖∗

with respect to θ = [θ1 · · · θL] ∈ Rs×L.

Problem data: W ∈ Rp×s and Y = [y1 · · · yL] ∈ Rp×L.

Regularization parameters: α ≥ 0, β ≥ 0.

Logistic loss function

φ(Z ,Y ) =
L∑

l=1

p∑
i=1

log (1 + exp(−YilZil)) .
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Multi-Task Logistic Regression

Rewrite problem in prox-affine form with

f1(Z ) = φ(Z ,Y ), f2(θ) = α

L∑
l=1

‖θl‖2, f3(θ̃) = β‖θ̃‖∗,

A =

[
I −W 0

0 I −I

]
, x =

 Z

θ

θ̃

 , b = 0.

We evaluate the proximal operator of f1 using the Newton-CG

method, and the rest with closed-form formulae.
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Multi-Task Logistic: Convergence of ‖r k‖2

p = 300, s = 500, L = 10, α = β = 0.1
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Other Examples

A2DR can be applied to many other problems (see paper for details):

l1 trend filtering.

Stratified models.

Single commodity flow optimization.

Optimal control.

Coupled quadratic program.
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Conclusion

A2DR is a fast, robust algorithm for solving generic convex

optimization problems in prox-affine form.

Highly scalable, parallelizable, and memory-efficient.

Consistently fast convergence with no parameter tuning.

Produces primal and dual solutions, or a certificate of

infeasibility/unboundedness.

Open-source Python library:

https://github.com/cvxgrp/a2dr
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