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Radiation Therapy

I Patient is scanned to obtain 3D image of anatomy,
delineated into structures consisting of discrete voxels

I Clinician identifies planning target volumes (PTVs) and
organs-at-risk (OARs)

I Clinician prescribes radiation dose for each PTV
I Patient is placed on couch, and radiation beams are

delivered via a linear accelerator
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Medical Linear Accelerator

Figure: Varian Linear Accelerator at Central Vermont Medical Center

Problem Description 5



Treatment Planning

I Radiation traveling through body damages both diseased
and healthy tissue

I Trade-off between irradiating PTVs and sparing OARs

Given beam positions and shapes, what beam intensities

I Deliver “close” to the prescribed dose for each PTV, and
I Minimize radiation to OARs and healthy tissue?
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Dose-Volume Histogram (DVH) Constraints

I Different anatomical structures react differently to radiation
I Need to control dose distribution over a structure
I We do this by imposing a DVH constraint:

At most (least) p% of structure receives over b Gy

I Ex: D(33) ≤ 12 on an OAR means at most 33% of the
organ receives over 12 Gy.
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Upper DVH Constraint: D(33) ≤ 12
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Lower DVH Constraint: D(90) ≥ 60
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Previous Work

I Linear and quadratic programming (Shepard et al, 1999)
I Multi-objective optimization (Hamacher & Küfer, 2002)
I Volumetric dose penalty with local search (Ehrgott et al,

2008)
I Mixed-integer programming (Lee, Fox & Crocker, 2000)
I CVaR approximation (Rockafellar & Uryasev, 2000)
I Constraints on dose moments (Zarepisheh et al, 2013)
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Convex Model

minimize
x ,y

f (y)
subject to Ax = y , x ≥ 0

I x ∈ Rn
+ beam intensities, y ∈ Rm

+ voxel doses
I A is (m voxels) × (n beams) dose influence matrix
I f : Rn → R is sum of piecewise linear functions

fs(yi ) = w−s (yi − ds)−︸ ︷︷ ︸
underdose

+w+
s (yi − ds)+︸ ︷︷ ︸

overdose

,

where ds is prescribed dose and (w−s ,w+
s ) are penalty

weights for structure s
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Penalty Function (OAR)
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Penalty Function (PTV)
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DVH Constraint Model

I Recall the (upper) DVH constraint Ds(p, y) ≤ b:

At most p% of structure s receives over b Gy

I Let Vs be the set of voxels for structure s
I If φs(p) = (p% of voxels in s), we can write this as

vs(y , b) :=
∑
i∈Vs

1{yi ≥ b} =
∑
i∈Vs

g(yi − b) ≤ φs(p),

where g(u) = 1{u ≥ 0}
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Indicator Function
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Convex Restriction

I DVH constraints are not convex!
I Replace g(·) with convex hinge loss

ĝλ(u) = max(1 + λu, 0) for λ > 0

I Since g(u) ≤ ĝλ(u), this provides restriction∑
i∈Vs

g(yi − b) ≤
∑
i∈Vs

ĝλ(yi − u) ≤ φs(p)
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Hinge Loss vs. Indicator
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I Since g(u) ≤ ĝλ(u), this provides restriction∑
i∈Vs

g(yi − b) ≤
∑
i∈Vs
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Restricted Problem

I By defining α := 1
λ > 0, restriction can be written as

D̂s(p, y , b, α) =
∑
i∈Vs

(α + (yi − b))+ − αφs(p) ≤ 0

I Convex restricted problem is

minimize
x ,y ,α

f (y)
subject to Ax = y , x ≥ 0, α ≥ 0

D̂s(p, y , b, α) ≤ 0

with variables x ∈ Rn
+, y ∈ Rm

+, and α ∈ R+
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Two-Pass Refinement

I Ds(p, y) ≤ b iff yi ≤ b for at least (100− p)% of voxels in s
I Refinement selects voxels to precisely bound using heuristic
I Solution with precise bound always satisfies DVH constraint
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Two-Pass Refinement

I First pass: Solve convex restricted problem for (x∗, y∗, α∗)
I Compute underdose margins ξ∗i = b − y∗i
I Identify dφs(100− p)e largest margins and include their

indices in Q
I Second pass: Solve for (x∗∗, y∗∗) in

minimize
x ,y

f (y)
subject to y = Ax , x ≥ 0

yi ≤ b, ∀i ∈ Q

using (x∗, y∗) as a warm start
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DVH Constraints with Slack

I Convex restricted problem may be infeasible even if original
problem is feasible

I Add slack variable δ ∈ R+ so restriction always feasible

minimize
x ,y ,α,δ

f (y)

subject to y = Ax , x ≥ 0, α ≥ 0, δ ≥ 0
D̂s(p, y , b + δ, α) ≤ 0

I For second pass, use slack margins ξ∗i = b + δ∗ − yi
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Head and Neck Case

I 4-arc VMAT aperture re-weighting case
I 270,000 voxels × 360 beams
I 17 structures: PTV (66 Gy), OARs, generic body voxels
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Unconstrained Plan
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Add D(20) ≤ 70 Gy on PTV
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First Pass
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Second Pass
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D(98) ≥ 66 Gy on PTV, No Slack
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Add D(20) ≤ 20 Gy on OAR
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Plan with Slackened PTV Constraint
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Conclusion

I First principled method for handling DVH constraints
I Python library ConRad with intuitive interface
I http://stanford.edu/˜boyd/papers/conrad.html
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